Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(22): 4844-4856.e5, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37832552

ABSTRACT

After endocytosis, many plasma membrane components are recycled via membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here, we document an interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo, as does the loss of the PXF-1 target RAP-1. In some contexts, Rap-GTPases negatively regulate RhoA activity, suggesting a potential for Syndapin to regulate RhoA. Our results indicate that in the C. elegans intestine, RHO-1/RhoA is enriched on SDPN-1- and RAP-1-positive endosomes, and the loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well known for controlling actomyosin contraction cycles, although little is known about the effects of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1-positive endosomes, with two non-muscle myosin II heavy-chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, whereas depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating that actomyosin contractility controls recycling endosome function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , GTP Phosphohydrolases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Actomyosin/metabolism , Endocytosis/physiology , Endosomes/metabolism , Myosin Type II/metabolism
2.
Am J Med Genet A ; 191(7): 1783-1791, 2023 07.
Article in English | MEDLINE | ID: mdl-37042183

ABSTRACT

Gaucher disease (GD) is an autosomal recessive disorder resulting from glucocerebrosidase deficiency due to pathologic variants in GBA1. While clinically heterogeneous, GD encompasses three types, non-neuronopathic (GD1), acute neuronopathic (GD2), and chronic neuronopathic (GD3). Newborn screening (NBS), which has made remarkable inroads in detecting certain diseases before detrimental health consequences and fatality ensues, is now being piloted for GD in several states and countries. Early on, clinical features of GD2 can overlap with GD3; hence, predicting outcome is challenging. As NBS for GD becomes more available, the increased detection of GD in neonates is inevitable. As a result, health care providers and families will be faced with uncertainty with respect to clinical management. Since more severe GBA1 variants are generally associated with neuronopathic GD, there has been an increased dependence on genotypic information. We present an infant detected by NBS with genotype D409H(p.Asp448His)/RecNciI (p.Leu483Pro; p.Ala495Pro;p.Val499=). To assist in genetic counseling, we performed a retrospective review of other patients in our cohort carrying D409H and reviewed the literature. The study illustrates the challenges faced in counseling for infants with neuronopathic GD, even with known GBA1 variants, and the tough management decisions that can ensue from detection in newborns.


Subject(s)
Gaucher Disease , Glucosylceramidase , Humans , Infant, Newborn , Glucosylceramidase/genetics , Neonatal Screening , Gaucher Disease/diagnosis , Gaucher Disease/genetics , Phenotype , Genotype
3.
bioRxiv ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36909525

ABSTRACT

After endocytosis, many plasma membrane components are recycled via narrow-diameter membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that the F-BAR and SH3 domain Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here we sought to determine the significance of a predicted interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations we engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo , as does loss of the PXF-1 target RAP-1. Rap-GTPases have been shown in several contexts to negatively regulate RhoA activity. Our results show that RHO-1/RhoA is enriched on SDPN-1 and RAP-1 positive endosomes in the C. elegans intestine, and loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well-known for controlling actomyosin contraction cycles, although little is known of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1 positive endosomes, with two non-muscle myosin II heavy chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, while depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating actomyosin contractility in controlling recycling endosome function.

6.
Biomolecules ; 11(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33920837

ABSTRACT

Exosomes, small membrane-bound organelles formed from endosomal membranes, represent a heterogenous source of biological and pathological biomarkers capturing the metabolic status of a cell. Exosomal cargo, including lipids, proteins, mRNAs, and miRNAs, can either act as inter-cellular messengers or are shuttled for autophagic/lysosomal degradation. Most cell types in the central nervous system (CNS) release exosomes, which serve as long and short distance communicators between neurons, astrocytes, oligodendrocytes, and microglia. Lysosomal storage disorders are diseases characterized by the accumulation of partially or undigested cellular waste. The exosomal content in these diseases is intrinsic to each individual disorder. Emerging research indicates that lysosomal dysfunction enhances exocytosis, and hence, in lysosomal disorders, exosomal secretion may play a role in disease pathogenesis. Furthermore, the unique properties of exosomes and their ability to carry cargo between adjacent cells and organs, and across the blood-brain barrier, make them attractive candidates for use as therapeutic delivery vehicles. Thus, understanding exosomal content and function may have utility in the treatment of specific lysosomal storage disorders. Since lysosomal dysfunction and the deficiency of at least one lysosomal enzyme, glucocerebrosidase, is associated with the development of parkinsonism, the study and use of exosomes may contribute to an improved understanding of Parkinson disease, potentially leading to new therapeutics.


Subject(s)
Exosomes/metabolism , Lysosomal Storage Diseases/metabolism , Animals , Biological Transport , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy
7.
Mol Biol Cell ; 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27630264

ABSTRACT

Syndapin/Pascin family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports have also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of syndapin effects on the earlier step of endocytic uptake, and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only C. elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact, and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together our results provide strong evidence for an in vivo function of syndapin in endocytic recycling, and suggest that syndapin promotes transport via endosomal fission.

8.
PLoS Genet ; 12(6): e1006093, 2016 06.
Article in English | MEDLINE | ID: mdl-27272733

ABSTRACT

EHBP-1 (Ehbp1) is a conserved regulator of endocytic recycling, acting as an effector of small GTPases including RAB-10 (Rab10). Here we present evidence that EHBP-1 associates with tubular endosomal phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] enriched membranes through an N-terminal C2-like (NT-C2) domain, and define residues within the NT-C2 domain that mediate membrane interaction. Furthermore, our results indicate that the EHBP-1 central calponin homology (CH) domain binds to actin microfilaments in a reaction that is stimulated by RAB-10(GTP). Loss of any aspect of this RAB-10/EHBP-1 system in the C. elegans intestinal epithelium leads to retention of basolateral recycling cargo in endosomes that have lost their normal tubular endosomal network (TEN) organization. We propose a mechanism whereby RAB-10 promotes the ability of endosome-bound EHBP-1 to also bind to the actin cytoskeleton, thereby promoting endosomal tubulation.


Subject(s)
Actins/metabolism , Caenorhabditis elegans Proteins/metabolism , Endosomes/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Animals , Biological Transport/physiology , Caenorhabditis elegans/metabolism , Endocytosis/physiology , Intestinal Mucosa/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Binding/physiology , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...