Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 98: 104886, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995467

ABSTRACT

BACKGROUND: The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS: We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS: We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION: Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , Multiple Myeloma/therapy , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Immunoglobulin G , Immunity , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
6.
medRxiv ; 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34031663

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.

8.
Front Immunol ; 12: 759688, 2021.
Article in English | MEDLINE | ID: mdl-34987505

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Saliva/virology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...