Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563410

ABSTRACT

Non-coding micro-RNA (miRNAs) regulate the protein expression responsible for cell growth and proliferation. miRNAs also play a role in a cancer cells' response to drug treatment. Knowing that leukemia and lymphoma cells show different responses to active forms of vitamin D3, we decided to investigate the role of selected miRNA molecules and regulated proteins, analyzing if there is a correlation between the selected miRNAs and regulated proteins in response to two active forms of vitamin D3, calcitriol and tacalcitol. A total of nine human cell lines were analyzed: five leukemias: MV-4-1, Thp-1, HL-60, K562, and KG-1; and four lymphomas: Raji, Daudi, Jurkat, and U2932. We selected five miRNA molecules-miR-27b, miR-32, miR-125b, miR-181a, and miR-181b-and the proteins regulated by these molecules, namely, CYP24A1, Bak1, Bim, p21, p27, p53, and NF-kB. The results showed that the level of selected miRNAs correlates with the level of proteins, especially p27, Bak1, NFκB, and CYP24A1, and miR-27b and miR-125b could be responsible for the anticancer activity of active forms of vitamin D3 in human leukemia and lymphoma.


Subject(s)
Cholecalciferol , Leukemia , Lymphoma , MicroRNAs , Cell Line/drug effects , Cell Line/metabolism , Cell Proliferation , Cholecalciferol/pharmacology , Humans , Leukemia/genetics , Leukemia/metabolism , Lymphoma/genetics , Lymphoma/metabolism , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Vitamin D3 24-Hydroxylase
2.
Cancers (Basel) ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35053549

ABSTRACT

The active forms of vitamin D3 (calcitriol and tacalcitol) coupled to the vitamin D receptor (VDR) are known to exhibit anti-cancer properties. However, not all cancer cells are sensitive to the active forms of vitamin D3 and its analogs. The study aimed to determine whether polymorphism of VDR is responsible for the sensitivity of human leukemia and lymphoma cells to calcitriol and tacalcitol. The impact of calcitriol and tacalcitol on the proliferation and morphology of nine different leukemia and lymphoma cell lines was determined. Only MV-4-11, Thp-1, and HL-60 cell lines sensitive to proliferation inhibition by calcitriol and tacalcitol showed morphology changes. Subsequently, the levels of the VDR and 1,25D3-MARRS proteins of calcitriol and tacalcitol binding receptors and the VDR receptor polymorphism in human leukemia and lymphoma cells were ascertained. Contrary to the current understanding, higher levels of VDR are not responsible for the greater sensitivity of cells to calcitriol and tacalcitol. Importantly, we first showed that sensitivity to calcitriol and tacalcitol in leukemias and lymphomas could be determined by the VDR polymorphism. The FokI polymorphism and the presence of the "bat" haplotype were observed only in the sensitive cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...