Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(1)2024 01 05.
Article in English | MEDLINE | ID: mdl-38109935

ABSTRACT

Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.


Subject(s)
Genomics , Introduced Species , Humans , Climate
2.
Front Insect Sci ; 2: 795379, 2022.
Article in English | MEDLINE | ID: mdl-38468794

ABSTRACT

Khapra beetle, Trogoderma granarium Everts, 1898, is a serious pest of stored grain products globally. Environmental DNA (eDNA)-based methods offer sensitive detection tools used to inform biosecurity officers on the presence of high-risk pests. This study tested laboratory and portable molecular technologies to detect khapra beetle environmental DNA extracted from dust samples collected during biosecurity responses (Tuggeranong and Fyshwick) to khapra beetle incursions in Australia. Airborne and floor dust samples were collected opportunistically using handheld vacuum cleaners and eDNA was extracted using either field or laboratory-based extraction methods and analyzed using laboratory benchtop real time PCR machines and portable machines with two TaqMan and one LAMP-based assay. We successfully collected, extracted, and amplified khapra beetle eDNA from dust samples by qPCR, but failed to amplify T. granarium eDNA using LAMP. The Laboratory qPCR machine showed significantly higher mean Ct values (p < 0.001) and significantly higher positive detections for both assays (p < 0.001) compared to the portable thermocycler. DNA yield was significantly higher in samples extracted using laboratory-based kits compared to field kits (p < 0.001) for both vacuumed and airborne samples (Mean DNA ± S.D. = 5.52 ± 4.45 and 4.77 ± 1.68 ng/µL, respectively), compared to field kits, (1.75 ± 1.17 and 1.36± 1.29 ng/µL for vacuumed and airborne samples, respectively). There were no significant differences in DNA yield between collection methods or differences in amplification associated to extraction or collection methods in either platform tested in this study. Portable technologies tested in this study (Franklin™ Real Time Thermocycler and Genie III) accurately amplified all tissue derived DNA during assay optimisation and field testing, highlighting the capacity of these technologies to complement biosecurity in confirming specimen ID. There was a high incidence of positive detections in field negative controls (Tuggeranong = 12.3 % and Fyshwick = 50 %), mostly attributed to the use of contaminated vacuum cleaners. We discuss suitable methods to minimize sample cross-contamination, the potential of portable molecular technologies as tools for biosecurity applications, and the suitability of eDNA-based molecular detection methods to complement global trade biosecurity for one of the most invasive and important grain pests worldwide.

3.
Zoology (Jena) ; 143: 125853, 2020 12.
Article in English | MEDLINE | ID: mdl-33157508

ABSTRACT

Dietary composition is a fundamental part of animal ecology and an important component of population dynamics. Therefore, obtaining accurate information on what an animal consumes is important for conservation planning, especially for wild large carnivores that exist in human-dominated landscapes where they are prone to direct conflicts with local people. We used faecal DNA metabarcoding to identify the vertebrate taxa commonly predated on by cheetahs (Acinonyx jubatus) with an emphasis on domestic taxa and determine the drivers of livestock predation by cheetahs residing in the Maasai Mara and Amboseli ecosystems which are important population strongholds in southern Kenya. From 84 cheetah faeces that we analysed, a total of 14 prey taxa were identified, including birds, wild and domestic mammals. The livestock taxa identified in cheetah faeces occurred at moderate frequency (12.8%) and the results showed that livestock predation was influenced neither by the sex of the cheetah nor by season. In general, our study shows that cheetahs prey on a diverse range of prey taxa including birds, wild ungulates of various sizes and occasionally on domestic animals, and that the faecal DNA metabarcoding approach represents a valuable complement to traditional dietary analysis methods.


Subject(s)
Acinonyx/physiology , Feces/chemistry , Livestock/genetics , Mammals/genetics , Predatory Behavior , Animals , Animals, Wild , DNA/genetics , Diet , Ecosystem , Female , Kenya , Male
4.
Sci Rep ; 10(1): 15129, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934324

ABSTRACT

Two species breeding in sympatry are more likely to coexist if their ecological niches are segregated either in time, space or in trophic habits. Here, we combined GPS-tracking, stable isotope analysis and DNA metabarcoding analysis to understand how the rare Tahiti petrel Pseudobulweria rostrata (TP) copes with the very abundant (i.e. 500,000 breeding pairs) wedge-tailed shearwater Ardenna pacifica (WTS) when breeding in sympatry in a tropical area. WTS foraged in restricted areas along their path, while TP predominantly foraged using extensive search behavior, suggesting a more opportunistic foraging strategy. Interspecific overlap of foraging areas was higher than intraspecific overlap. Breeding seasons largely overlap between species during the study, but TP seems to be asynchronous breeders. TP fed upon prey with higher δ15N values than WTS, and their diet was mainly composed of deep-sea organisms. TP could feed upon dead prey floating at the surface while WTS preyed mainly upon fish species that generally move in schools. Our study highlights several segregating mechanisms (temporal, behavioral and trophic) that could facilitate the coexistence of the two species despite the predominant number of WTS, and provides the very first information on the foraging and trophic ecology of the poorly-known TP.


Subject(s)
Behavior, Animal , Birds/classification , Birds/physiology , Ecosystem , Feeding Behavior , Genetic Speciation , Predatory Behavior , Animals , Birds/genetics , Breeding , Carbon Isotopes/analysis , DNA Barcoding, Taxonomic , Diet , Nitrogen Isotopes/analysis , Nutritional Status , Seasons , Species Specificity , Sympatry
5.
PLoS One ; 14(12): e0225805, 2019.
Article in English | MEDLINE | ID: mdl-31851671

ABSTRACT

Scat DNA metabarcoding is increasingly being used to track the feeding ecology of elusive wildlife species. This approach has greatly increased the resolution and detection success of prey items contained in scats when compared with other classical methods. However, there have been few studies that have systematically tested the applicability and reliability of this approach to study the diet of large felids species in the wild. Here we assessed the effectiveness of this approach in the cheetah Acinonyx jubatus. We tested how scat degradation, meal size, prey species consumed and feeding day (the day a particular prey was consumed) influenced prey DNA detection success in captive cheetahs. We demonstrated that it is possible to obtain diet information from 60-day old scats using genetic approaches, but the efficiency decreased over time. Probability of species-identification was highest for food items consumed one day prior to scat collection and the probability of being able to identify the species consumed increased with the proportion of the prey consumed. Detection success varied among prey species but not by individual cheetah. Identification of prey species using DNA detection methods from a single consumption event worked for samples collected between 8 and 72 hours post-feeding. Our approach confirms the utility of genetic approaches to identify prey species in scats and highlight the need to account for the systematic bias in results to control for possible scat degradation, feeding day, meal size and prey species consumed especially in the wild-collected scats.


Subject(s)
Acinonyx/physiology , DNA Barcoding, Taxonomic/methods , DNA/analysis , Diet/veterinary , Feces/chemistry , Animals
6.
Ecol Evol ; 8(17): 8697-8712, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30271538

ABSTRACT

High-throughput sequencing of environmental DNA (i.e., eDNA metabarcoding) has become an increasingly popular method for monitoring aquatic biodiversity. At present, such analyses require target-specific primers to amplify DNA barcodes from co-occurring species, and this initial amplification can introduce biases. Understanding the performance of different primers is thus recommended prior to undertaking any metabarcoding initiative. While multiple software programs are available to evaluate metabarcoding primers, all programs have their own strengths and weaknesses. Therefore, a robust in silico workflow for the evaluation of metabarcoding primers will benefit from the use of multiple programs. Furthermore, geographic differences in species biodiversity are likely to influence the performance of metabarcoding primers and further complicate the evaluation process. Here, an in silico workflow is presented that can be used to evaluate the performance of metabarcoding primers on an ecoregion scale. This workflow was used to evaluate the performance of published and newly developed eDNA metabarcoding primers for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). To validate the in silico workflow, a subset of the primers, including one newly designed primer pair, were used in metabarcoding analyses of an artificial DNA community and eDNA samples. The results show that the in silico workflow allows for a robust evaluation of metabarcoding primers and can reveal important trade-offs that need to be considered when selecting the most suitable primer. Additionally, a new primer pair was described and validated that allows for more robust taxonomic assignments and is less influenced by primer biases compared to commonly used fish metabarcoding primers.

7.
Environ Sci Technol ; 52(11): 6408-6416, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29757618

ABSTRACT

Environmental DNA (eDNA) is increasingly used to monitor aquatic macrofauna. Typically, short mitochondrial DNA fragments are targeted because these should be relatively more abundant in the environment as longer fragments will break into smaller fragments over time. However, longer fragments may permit more flexible primer design and increase taxonomic resolution for eDNA metabarcoding analyses, and recent studies have shown that long mitochondrial eDNA fragments can be extracted from environmental water samples. Nuclear eDNA fragments have also been proposed as targets, but little is known about their persistence in the aquatic environment. Here we measure the abundance of mitochondrial eDNA fragments of different lengths and of short nuclear eDNA fragments, originating from captive fish in experimental tanks, and we test whether longer mitochondrial and short nuclear fragments decay faster than short mitochondrial fragments following fish removal. We show that when fish are present, shorter mitochondrial fragments are more abundant in water samples than both longer mitochondrial fragments and short nuclear eDNA fragments. However, the rate of decay following fish removal was similar for all fragment types, suggesting that the differences in abundance resulted from differences in the rates at which different fragment types were produced rather than differences in their decay rates.


Subject(s)
DNA Barcoding, Taxonomic , Fishes , Animals , DNA, Mitochondrial
8.
Genes (Basel) ; 9(5)2018 May 03.
Article in English | MEDLINE | ID: mdl-29751579

ABSTRACT

Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

9.
PLoS One ; 12(6): e0179251, 2017.
Article in English | MEDLINE | ID: mdl-28604830

ABSTRACT

The environmental DNA (eDNA) method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus) as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days). This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.


Subject(s)
DNA/analysis , DNA/isolation & purification , Water/analysis , Water/chemistry , Environmental Monitoring , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Reagent Kits, Diagnostic , Water Microbiology
10.
Pest Manag Sci ; 73(1): 262-266, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27117082

ABSTRACT

BACKGROUND: Anticoagulant toxins are used globally to control rats. Resistance of Rattus species to these toxins now occurs in at least 18 countries in Europe, America and Asia. Resistance is often associated with single nucleotide polymorphisms (SNPs) in the Vkorc1 gene. This study gives a first overview of the distribution and frequency of Vkorc1 SNPs in rats in New Zealand. New Zealand is unusual in having no native rodents but three species of introduced Rattus - norvegicus Berk., rattus L. and exulans Peale. RESULTS: Sequence variants occurred in at least one species of rat at all 30 of the sites sampled. Three new SNPs were identified, one in kiore and two in ship rats. No SNPs previously associated with resistance were found in Norway rats or kiore, but seven ship rats were heterozygous and one homozygous for the A74T variant. Its resultant Tyr25Phe mutation has previously been associated with resistance to both first- and second-generation anticoagulants in ship rats in Spain. CONCLUSIONS: This is the first evidence of potential resistance to anticoagulant toxins in rats in New Zealand. Further testing using blood clotting response times in dosed rats is needed to confirm resistance potentially conferred by the Tyr25Phe mutation. Assessment is also needed of the potential of the other non-synonymous variants (Ala14Val, Ala26Val) recorded in this study to confer resistance to anticoagulant toxins. © 2016 Society of Chemical Industry.


Subject(s)
Anticoagulants/toxicity , Drug Resistance/genetics , Rats/genetics , Rodenticides/toxicity , Vitamin K Epoxide Reductases/genetics , Animals , Pest Control , Polymorphism, Single Nucleotide
11.
Mol Ecol Resour ; 16(3): 641-54, 2016 May.
Article in English | MEDLINE | ID: mdl-26536842

ABSTRACT

Imperfect sensitivity, or imperfect detection, is a feature of all survey methods that needs to be accounted for when interpreting survey results. Detection of environmental DNA (eDNA) is increasingly being used to infer species distributions, yet the sensitivity of the technique has not been fully evaluated. Sensitivity, or the probability of detecting target DNA given it is present at a site, will depend on both the survey method and the concentration and dispersion of target DNA molecules at a site. We present a model to estimate target DNA concentration and dispersion at survey sites and to estimate the sensitivity of an eDNA survey method. We fitted this model to data from a species-specific eDNA survey for Oriental weatherloach, Misgurnus anguillicaudatus, at three sites sampled in both autumn and spring. The concentration of target DNA molecules was similar at all three sites in autumn but much higher at two sites in spring. Our analysis showed the survey method had ≥95% sensitivity at sites where target DNA concentrations were ≥11 molecules per litre. We show how these data can be used to compare sampling schemes that differ in the number of field samples collected per site and number of PCR replicates per sample to achieve ≥95% sensitivity at a given target DNA concentration. These models allow researchers to quantify the sensitivity of eDNA survey methods to optimize the probability of detecting target species, and to compare DNA concentrations spatially and temporarily.


Subject(s)
Biota , Computational Biology/methods , Ecosystem , Sequence Analysis, DNA/methods , Models, Statistical , Sensitivity and Specificity
12.
BMC Evol Biol ; 15: 63, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25886729

ABSTRACT

BACKGROUND: The New Zealand native frogs, family Leiopelmatidae, are among the most archaic in the world. Leiopelma hochstetteri (Hochstetter's frog) is a small, semi-aquatic frog with numerous, fragmented populations scattered across New Zealand's North Island. We characterized a major histocompatibility complex (MHC) class II B gene (DAB) in L. hochstetteri from a spleen transcriptome, and then compared its diversity to neutral microsatellite markers to assess the adaptive genetic diversity of five populations ("evolutionarily significant units", ESUs). RESULTS: L. hochstetteri possessed very high MHC diversity, with 74 DAB alleles characterized. Extremely high differentiation was observed at the DAB locus, with only two alleles shared between populations, a pattern that was not reflected in the microsatellites. Clustering analysis on putative peptide binding residues of the DAB alleles indicated four functional supertypes, all of which were represented in 4 of 5 populations, albeit at different frequencies. Otawa was an exception to these observations, with only two DAB alleles present. CONCLUSIONS: This study of MHC diversity highlights extreme population differentiation at this functional locus. Supertype differentiation was high among populations, suggesting spatial and/or temporal variation in selection pressures. Low DAB diversity in Otawa may limit this population's adaptive potential to future pathogenic challenges.


Subject(s)
Amphibian Proteins/genetics , Anura/genetics , Anura/immunology , Endangered Species , Histocompatibility Antigens Class II/genetics , Amino Acid Sequence , Animals , Genetic Variation , Microsatellite Repeats , Molecular Sequence Data , New Zealand , Sequence Alignment
13.
Zoolog Sci ; 31(8): 515-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25088592

ABSTRACT

The endangered schizothoracine fish Gymnodiptychus pachycheilus is endemic to the Qinghai-Tibetan Plateau (QTP), but very little genetic information is available for this species. Here, we accessed the current genetic divergence of G. pachycheilus population to evaluate their distributions modulated by contemporary and historical processes. Population structure and demographic history were assessed by analyzing 1811-base pairs of mitochondrial DNA from 61 individuals across a large proportion of its geographic range. Our results revealed low nucleotide diversity, suggesting severe historical bottleneck events. Analyses of molecular variance and the conventional population statistic FST (0.0435, P = 0.0215) confirmed weak genetic structure. The monophyly of G. pachycheilus was statistically well-supported, while two divergent evolutionary clusters were identified by phylogenetic analyses, suggesting a microgeographic population structure. The consistent scenario of recent population expansion of two clusters was identified based on several complementary analyses of demographic history (0.096 Ma and 0.15 Ma). This genetic divergence and evolutionary process are likely to have resulted from a series of drainage arrangements triggered by the historical tectonic events of the region. The results obtained here provide the first insights into the evolutionary history and genetic status of this little-known fish.


Subject(s)
Cyprinidae/genetics , Cyprinidae/physiology , Animals , China , Conservation of Natural Resources , Demography , Endangered Species , Phylogeny
15.
PLoS One ; 9(3): e92043, 2014.
Article in English | MEDLINE | ID: mdl-24637802

ABSTRACT

Identifying species occupying an area is essential for many ecological and conservation studies. Faecal DNA is a potentially powerful method for identifying cryptic mammalian species. In New Zealand, 10 species of ungulate (Order: Artiodactyla) have established wild populations and are managed as pests because of their impacts on native ecosystems. However, identifying the ungulate species present within a management area based on pellet morphology is unreliable. We present a method that enables reliable identification of 10 ungulate species (red deer, sika deer, rusa deer, fallow deer, sambar deer, white-tailed deer, Himalayan tahr, Alpine chamois, feral sheep, and feral goat) from swabs of faecal pellets. A high resolution melting (HRM) assay, targeting a fragment of the 12S rRNA gene, was developed. Species-specific primers were designed and combined in a multiplex PCR resulting in fragments of different length and therefore different melting behaviour for each species. The method was developed using tissue from each of the 10 species, and was validated in blind trials. Our protocol enabled species to be determined for 94% of faecal pellet swabs collected during routine monitoring by the New Zealand Department of Conservation. Our HRM method enables high-throughput and cost-effective species identification from low DNA template samples, and could readily be adapted to discriminate other mammalian species from faecal DNA.


Subject(s)
Artiodactyla/classification , Artiodactyla/genetics , DNA/analysis , DNA/genetics , Feces , Nucleic Acid Denaturation/genetics , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Molecular Sequence Data , New Zealand , Preservation, Biological , RNA, Ribosomal/genetics , Reference Standards , Reproducibility of Results , Species Specificity
16.
Mitochondrial DNA ; 25(2): 135-41, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23607477

ABSTRACT

In this study, we use three mitochondrial markers, cytochrome b gene (Cyt b), NADH dehydrogenase subunit 4 (ND4) and control region (D-loop) to investigate the phylogenetic relationships of extant zokor species in Mysopalacinae. The phylogenetic tree constructed based on Cyt b strongly supports the monophyly genera Eospalax and Myospalax with E. fontanierii being the most ancient species in Eospalax. Further phylogenetic analyses of four species of Eospalax based on ND4 and D-loop sequences revealed two clades that correspond to two geographical distributions. The basal clade includes E. cansus which is mainly found on Loess Plateau (LP) and another clade including E. baileyi, E. smithii and E. rufescens that inhabits areas above 2000 m on Qinghai-Tibetan Plateau (QTP) and Qinling Mountains. Geographical events of QTP and LP may have played a major role in the diversification and evolution of Mysopalacinae.


Subject(s)
DNA, Mitochondrial/genetics , Phylogeny , Rodentia/genetics , Animals , China , Evolution, Molecular , Geography , Sequence Analysis, DNA , Species Specificity
17.
Electrophoresis ; 34(24): 3370-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24310859

ABSTRACT

An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.


Subject(s)
Mammals/classification , Mammals/genetics , Multiplex Polymerase Chain Reaction/methods , Animals , Biology , Cytochromes b/genetics , Ecology , Forensic Sciences , Humans , New Zealand , Palaeognathae , Predatory Behavior , Reproducibility of Results , Sensitivity and Specificity , Sequence Alignment
18.
Mitochondrial DNA ; 24(6): 651-3, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23544500

ABSTRACT

Mysopalacinae (zokors) is a group of fossorial rodents for which the taxonomy has yet to reach consensus. Furthermore, due to their fossorial lifestyle, little is known about their ecology. Molecular data are important to elucidate such aspects. In this paper, the complete mitochondrial DNA genome of Gansu zokor (Eospalax cansus) of the type found in Lintan, China was determined. The genome is 16,354 bp in length and consists of 13 protein-coding genes, 22 tRNA genes, two ribosomal RNA genes, and two main non-coding regions (the control region and the origin of the light strand replication), the gene composition and order of which are similar to most other mammals. The overall base composition is T 30.0%, C 24.2%, A 33.5%, and G 12.3%, with an A + T bias of 63.5%. These mitogenome sequence data are potentially important for evolutionary, population genetic, and ecological studies of the Mysopalacinae.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , Rodentia/genetics , Animals , Base Composition , Proteins/genetics , RNA, Ribosomal/genetics , RNA, Transfer/genetics
19.
PLoS One ; 7(4): e34599, 2012.
Article in English | MEDLINE | ID: mdl-22511953

ABSTRACT

Climatic cooling and substantial tectonic activity since the late Miocene have had a pronounced influence on the evolutionary history of the fauna of New Zealand's South Island. However, many species have recently experienced dramatic range reductions due to habitat fragmentation and the introduction of mammalian predators and competitors. These anthropogenic impacts have been particularly severe in the tussock grasslands of the Otago region. The Otago skink (Oligosoma otagense), endemic to the region, is one of the most critically endangered vertebrates in New Zealand. We use mitochondrial DNA sequence data to investigate the evolutionary history of the Otago skink, examine its population genetic structure, and assess the level of genetic diversity in the individuals in the captive breeding program. Our data indicate that the Otago skink diverged from its closest relatives in the Miocene, consistent with the commencement of tectonic uplift of the Southern Alps. However, there is evidence for past introgression with the scree skink (O. waimatense) in the northern Otago-southern Canterbury region. The remnant populations in eastern Otago and western Otago are estimated to have diverged in the mid-Pliocene, with no haplotypes shared between these two regions. This divergence accounts for 95% of the genetic diversity in the species. Within both regions there is strong genetic structure among populations, although shared haplotypes are generally evident between adjacent localities. Although substantial genetic diversity is present in the captive population, all individuals originate from the eastern region and the majority had haplotypes that were not evident in the intensively managed populations at Macraes Flat. Our data indicate that eastern and western populations should continue to be regarded as separate management units. Knowledge of the genetic diversity of the breeding stock will act to inform the captive management of the Otago skink and contribute to a key recovery action for the species.


Subject(s)
Endangered Species , Lizards/physiology , Phylogeography , Animals , Conservation of Natural Resources , DNA, Mitochondrial/chemistry , Genetic Variation , Haplotypes , Hybridization, Genetic , Likelihood Functions , Lizards/classification , Lizards/genetics , Molecular Sequence Data , New Zealand , Sequence Analysis, DNA
20.
Genome Biol Evol ; 2: 425-40, 2010 Jul 12.
Article in English | MEDLINE | ID: mdl-20624745

ABSTRACT

Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms--the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of the highly debated clade Mandibulata.


Subject(s)
Arthropods/classification , Arthropods/genetics , Evolution, Molecular , Genome, Mitochondrial , Invertebrates/classification , Invertebrates/genetics , Animals , Arachnida/classification , Arachnida/genetics , Base Composition , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Gene Order , Gene Rearrangement , Models, Genetic , Nematoda/classification , Nematoda/genetics , Phylogeny , Tardigrada/classification , Tardigrada/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...