Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Article in English | MEDLINE | ID: mdl-38725091

ABSTRACT

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Subject(s)
HIV Reverse Transcriptase , Immunodeficiency Virus, Feline , Reverse Transcriptase Inhibitors , Animals , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Cats , Immunodeficiency Virus, Feline/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Structure-Activity Relationship , Pyrimidines/chemistry , Pyrimidines/pharmacology , Alkynes/chemistry , Alkynes/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Cyclopropanes/pharmacology , Cyclopropanes/chemistry , Molecular Docking Simulation , Benzoxazines/chemistry , Benzoxazines/pharmacology
2.
J Comput Chem ; 44(5): 670-676, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36398747

ABSTRACT

Oxindoles are an important class of heterocyclic alkaloids with demonstrated pharmacological activity at multiple biological targets. Preparation of new analogs through novel synthetic routes is therefore highly attractive. In this work, we report a computational study to investigate the synthesis of ethoxycarbonyldifluoromethylated oxindoles from N-arylmethacrylamides. The reaction tolerates a diverse range of acrylamides, shows yields ranging from approximately 38%-96%. We have applied density functional theory (DFT) to explore the reaction mechanism, kinetics and thermodynamics to gain further understanding. We demonstrate that a radical-based ring closure reaction is energetically more favorable than a heterolytic process, that the rate-determining step is the formation of the arylmethacrylamide radical, and that the product yields and selectivities are consistent with experiment. The results demonstrate that theoretical methods can prove useful to understand how such reaction and could be potentially employed to rapidly explore the reaction scope further.


Subject(s)
Oxindoles , Thermodynamics
3.
RSC Med Chem ; 13(12): 1587-1604, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561069

ABSTRACT

The synthesis and evaluation of twenty six new phenylurea substituted 2,4-diamino-pyrimidines against Plasmodium falciparum (Pf) 3D7 are reported. Compounds were prepared to improve both anti-malarial activity and selectivity of the series previously reported by our group. Additional properties have been determined to assess their potential as anti-malarial leads including; HepG2 cytotoxicity, solubility, permeability, and lipophilicity, as well as in vitro stability in human and rat microsomes. We also assess their inhibition profile against a diverse set of 10 human kinases. Molecular docking, cheminformatics and bioinformatics analyses were also undertaken. Compounds 40 demonstrated the best anti-malarial activity at Pf 3D7 (0.09 µM), good selectivity with respect to mammalian cytotoxicity (SI = 54) and low microsomal clearance. Quantitative structure activity relationship (QSAR) analyses point to lipophilicity being a key driver of improved anti-malarial activity. The most active compounds in the series suffered from high lipophilicity, poor aqueous solubility and low permeability. The results provide useful information to guide further chemistry iterations.

4.
Bioorg Med Chem ; 76: 117092, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36450167

ABSTRACT

We report the synthesis, and characterization of twenty-nine new inhibitors of PDE5. Structure-based design was employed to modify to our previously reported 2,4-diaminoquinazoline series. Modification include scaffold hopping to 2,6-diaminopurine core as well as incorporation of ionizable groups to improve both activity and solubility. The prospective binding mode of the compounds was determined using 3D ligand-based similarity methods to inhibitors of known binding mode, combined with a PDE5 docking and molecular dynamics based-protocol, each of which pointed to the same binding mode. Chemical modifications were then designed to both increase potency and solubility as well as validate the binding mode prediction. Compounds containing a quinazoline core displayed IC50s ranging from 0.10 to 9.39 µM while those consisting of a purine scaffold ranging from 0.29 to 43.16 µM. We identified 25 with a PDE5 IC50 of 0.15 µM, and much improved solubility (1.77 mg/mL) over the starting lead. Furthermore, it was found that the predicted binding mode was consistent with the observed SAR validating our computationally driven approach.


Subject(s)
Phosphodiesterase 5 Inhibitors , Phosphodiesterase 5 Inhibitors/pharmacology , Prospective Studies , Quinazolines/pharmacology
5.
Org Biomol Chem ; 19(6): 1412-1425, 2021 02 14.
Article in English | MEDLINE | ID: mdl-33501482

ABSTRACT

TAK1 is a serine/threonine kinase which is involved in the moderation of cell survival and death via the TNFα signalling pathway. It is also implicated in a range of cancer and anti-inflammatory diseases. Drug discovery efforts on this target have focused on both traditional reversible ATP-binding site inhibitors and increasingly popular irreversible covalent binding inhibitors. Irreversible inhibitors can offer benefits in terms of potency, selectivity and PK/PD meaning they are increasingly pursued where the strategy exists. TAK1 kinase differs from the better-known kinase EGFR in that the reactive cysteine nucleophile targeted by electrophilic inhibitors is located towards the back of the ATP binding site, not at its mouth. While a wealth of structural and computational effort has been spent exploring EGFR, only limited studies on TAK1 have been reported. In this work we report the first QM/MM study on TAK1 aiming to better understand aspects of covalent adduct formation. Our goal is to identify the general base in the catalytic reaction, whether the process proceeds via a stepwise or concerted pathway, and how the highly flexible G-loop and A-loop affect the catalytic cysteine located nearby.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , Protein Kinase Inhibitors/metabolism , Catalytic Domain , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/chemistry , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Quantum Theory
6.
J Org Chem ; 84(7): 4025-4032, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30840460

ABSTRACT

Theoretical studies have been undertaken to rationalize the origin of the enantioselective Diels-Alder reaction (DA) of o-hydroxystyrene and azlactone catalyzed by (a) chiral BINOL-phosphoric acid (CPA) and (b) CPA and chiral guanidine (TBO). The sequence of events leading to increased enantioselectivity under the latter conditions have been studied using density functional theory (DFT) methods. The computational results indicate that both the mono- and co-catalytic processes proceed via stepwise [4 + 2] cycloaddition reactions involving three steps, which are (1) C-C bond formation, (2) C-O bond formation, and (3) the opening of the azlactone ring. This results in the formation of an oxygenous cycle with one chiral center. The origin of greater enantioselectivity under the latter catalytic conditions are discussed in terms of the structural characteristics and energetics of the intermediates and transition states formed on the potential energy surface of the competing reactions.

7.
J Phys Chem B ; 123(2): 407-418, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30522268

ABSTRACT

Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cß bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.


Subject(s)
Glycine Hydroxymethyltransferase/chemistry , Biocatalysis , Catalytic Domain , Models, Chemical , Molecular Dynamics Simulation , Plasmodium vivax/enzymology , Pyridoxal Phosphate/chemistry , Quantum Theory , Serine/chemistry , Tetrahydrofolates/chemistry
8.
Org Biomol Chem ; 16(34): 6239-6249, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30109337

ABSTRACT

The folate pathway is a recognized intervention point for treating parasitic and bacterial infections in humans. However, the efficacy of treatments targeting dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) has reduced due to disease-related mutations. This has prompted interest in other enzyme targets on this clinically validated pathway, including 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK). A challenge in the design of molecules to target this enzyme is that the precise mechanism of the reaction and the role of the active site residues are not fully understood. In this study, we report the first theoretical analysis of the catalytic pathway of the natural substrate using hybrid quantum mechanical/molecular mechanical (QM/MM) methods. The reaction profiles associated with three proposed general bases have been investigated, as well as the profile for two mutant enzymes, namely R92A and R82A. We identified R92 as the general base in the wildtype reaction. The predicted barriers are in good agreement with the observed experimental kcat values obtained for wildtype and mutant proteins.

9.
Org Biomol Chem ; 15(26): 5593-5601, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28639657

ABSTRACT

Dihydropteroate synthase (DHPS) catalyzes the condensation of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) with p-aminobenzoic acid (pABA) and is a well validated target for anti-malarial and anti-bacterial drugs. However, in recent years its utility as a therapeutic target has diminished considerably due to multiple mutations. As such, considerable structural biology and medicinal chemistry effort has been expended to understand and overcome this issue. To date no detailed computational analysis of the protein mechanism has been made despite the detailed crystal structures and multiple mechanistic proposals being made. In this study the mechanistic proposals for DHPS have been systematically investigated using a hybrid QM/MM method. We aimed to compare the energetics associated with SN1 and SN2 processes, whether the SN1 process involves a carbocation or neutral DHP intermediate, uncover the identity of the general base in the catalytic mechanism, and understand the differences in substrate vs. inhibitor reactivity. Our results suggest a reaction that follows an SN1 process with the rate determining step being C-O bond breaking to give a carbocation intermediate. Comparative studies on the inhibitor STZ confirm the experimental observations that it is also a DHPS substrate.


Subject(s)
Dihydropteroate Synthase/antagonists & inhibitors , Dihydropteroate Synthase/metabolism , Enzyme Inhibitors/pharmacology , Sulfonamides/pharmacology , Biocatalysis , Dihydropteroate Synthase/chemistry , Enzyme Inhibitors/chemistry , Molecular Dynamics Simulation , Quantum Theory , Substrate Specificity , Sulfonamides/chemistry , Yersinia pestis/enzymology
10.
Chem Res Toxicol ; 27(1): 51-60, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24410586

ABSTRACT

It is widely accepted that skin sensitization begins with the sensitizer in question forming a covalent adduct with a protein electrophile or nucleophile. We investigate the use of quantum chemical methods in an attempt to rationalize the sensitization potential of chemicals of the S(N)Ar reaction domain. We calculate the full reaction profile for 23 chemicals with experimental sensitization data. For all quantitative measurements, we find that there is a good correlation between the reported pEC3 and the calculated barrier to formation of the low energy product or intermediate (r(2) = 0.64, N = 12) and a stronger one when broken down by specific subtype (r(2) > 0.9). Using a barrier cutoff of ∼10 kcal/mol allows us to categorize 100% (N = 12) of the sensitizers from the nonsensitizers (N = 11), with just 1 nonsensitizer being mispredicted as a weak sensitizer (9%). This model has an accuracy of ∼96%, with a sensitivity of 100% and a specificity of ∼91%. We find that the kinetic and thermodynamic information provided by the complete profile can help in the rationalization process, giving additional insight into a chemical's potential for skin sensitization.


Subject(s)
Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Quantum Theory , Skin Irritancy Tests , Skin/drug effects , Kinetics , Models, Molecular , Thermodynamics
11.
Org Biomol Chem ; 10(35): 7053-61, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22858758

ABSTRACT

As a result of research on ligand efficiency in the pharmaceutical industry, there is greater focus on optimizing the strength of polar interactions within receptors, so that the contribution of overall size and lipophilicity to binding can be decreased. A number of quantum mechanical (QM) methods involving simple probes are available to assess the H-bonding potential of different heterocycles or functional groups. However, in most receptors, multiple features are present, and these have distinct directionality, meaning very minimalist models may not be so ideal to describe the interactions. We describe how the use of gas phase QM models of kinase protein-ligand complex, which can more closely mimic the polar features of the active site region, can prove useful in assessing alterations to a core template, or different substituents. We investigate some practical issues surrounding the use of QM cluster models in structure based design (SBD). These include the choice of the method; semi-empirical, density functional theory or ab-initio, the choice of the basis set, whether to include implicit or explicit solvation, whether BSSE should be included, etc. We find a combination of the M06-2X method and the 6-31G* basis set is sufficiently rapid, and accurate, for the computation of structural and energetic parameters for this system.


Subject(s)
Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Thermodynamics , Animals , Catalytic Domain , Humans , Hydrogen Bonding , Ligands , Models, Molecular , Protein Kinases/chemistry , Quantum Theory
12.
J Phys Chem A ; 115(51): 14629-36, 2011 Dec 29.
Article in English | MEDLINE | ID: mdl-22054170

ABSTRACT

In this study, the results from a systematic analysis of two different mechanisms for the skeletal isomerization of cis-butene to isobutene in ferrierite (FER) are presented. One involves a conventional mechanism that proceeds via stable alkoxide intermediates and the other is one which proceeds via carbenium ions only. A 27T QM cluster model has been used in this study, which is described using the M06-2X DFT functional. It is found that the alkoxide intermediates formed over the course of the conventional pathway are considerably lower in energy than the carbenium ion formed over the course of the alternate pathway. However, the rate determining step in the latter pathway is predicted to be almost 10 kcal/mol lower in energy. The higher barrier for the latter process is due to the inherent stability of the alkoxide intermediates formed within FER. These results appear to suggest that while these intermediates are formed over the course of the reaction, the skeletal isomerization of linear butenes to form isobutene in FER may occur via a carbenium based mechanism. This proposal is consistent with experimental results that show alkoxide intermediates are experimentally observed species.


Subject(s)
Alkenes/chemistry , Methane/analogs & derivatives , Oxides/chemistry , Zeolites/chemistry , Methane/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism , Thermodynamics
13.
J Mol Graph Model ; 29(4): 507-17, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21075029

ABSTRACT

Small changes in ligand structure can lead to large unexpected changes in activity yet it is often not possible to rationalize these effects using empirical modeling techniques, suggesting more effective methods are required. In this study we investigate the use of high level QM methods to study the interactions found within protein-ligand complexes as improved understanding of these could help in the design of new, more active molecules. We study aspects of ligand binding in a set of protein ligand complexes containing ligand efficient, fragment-like inhibitors as these structures are often challenging to determine experimentally. To assess the reliability of our theoretical models we compare the MP2/6-31+G** QM results to the original X-ray coordinates and to QM/MM B3LYP/6-31G*//UFF results which we have previously reported. We also contrast these results with data obtained from an analysis of the distribution of comparable interactions found in (a) high resolution kinase complexes (≤ 1.8Å) from the PDB and (b) more generic, small molecule crystal structures from the CSD.


Subject(s)
Drug Design , Mechanical Phenomena , Protein Kinases/chemistry , Quantum Theory , Crystallography, X-Ray , Databases, Protein , Hydrogen Bonding/drug effects , Ligands , Mechanical Phenomena/drug effects , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Reproducibility of Results
14.
J Chem Inf Model ; 49(6): 1437-48, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19459698

ABSTRACT

The use of QM/MM based methods to optimize and rescore GOLD derived cross-docked protein-ligand poses has been investigated using a range of fragment-like kinase inhibitors where experimental data have been reported. Particular emphasis has been placed on rationalizing the potential benefits of the method in the increasingly popular fragment based drug discovery area. The results of this cross-docking, rescoring study on 9 protein ligand complexes suggest that the hybrid QM/MM calculations could prove useful in kinase fragment based drug discovery (FBDD). B3LYP/6-31G**//UFF derived enthalphies allow us to identify the correct X-ray pose from a range of plausible decoys 77% of the time, almost a doubling of the retrieval rate compared to GOLD (44%). In addition, this method provides us with a means to rapidly and accurately generate virtual protein-ligand complexes that will allow a program team to probe the existing interactions between the ligand and protein and search for additional interactions.


Subject(s)
Drug Discovery/methods , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Ligands , Molecular Conformation , Quantum Theory
15.
J Chem Inf Model ; 49(3): 670-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19434900

ABSTRACT

Herein we investigate whether QM/MM could prove useful as a tool to study the often subtle binding phenomena found within pharmaceutical drug discovery programs. The goal of this investigation is to determine whether it is possible to employ high level QM/MM calculations to answer specific questions around a binding event in a cycle time that is aligned with medicinal chemistry synthesis. To this end QM/MM calculations have been performed on four protein kinase-ligand complexes using five different levels of theory, using standard hardware, in an effort to assess their utility. We conclude that the accuracy and turnaround time of such calculations mean they could prove valuable to (1) probe the subtle nature of the interactions within protein active sites, (2) facilitate the interpretation of poorly resolved electron density, and (3) study the impact of substituent changes on the binding conformation or in the assessment of alternate scaffolds. In practice, the successful application of such methods will be limited by the size of the system under investigation, the level of theory used, and whether there is a need for conformational sampling.


Subject(s)
Quantum Theory , Drug Design , Models, Molecular
16.
J Comput Aided Mol Des ; 22(8): 579-85, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18344003

ABSTRACT

In this study the results from a series of calculations are reported that probe the influence of the QM cluster size and the extended framework treatment in ONIOM calculations. This is done by comparing the differences in the structures and energetics obtained during simulations of cis-trans isomerisation of butene in H-ZSM-5 at varying level of accuracy. Seven different models have been employed; 3T, 5T and 10T DFT cluster models, and to more effectively encode the extended framework of ZSM-5; 3T:46T, 5T:46T, 10T:46T DFT:MM ONIOM models, and a 46T DFT cluster model. The results show that irrespective of the exact QM cluster size, relatively small gasphase clusters show clear limitations due to the neglect of the extended framework. In particular, the structural and electronic implications of using the different zeolite models have been rigorously assessed using the multivariate statistical method principal components analysis (PCA).


Subject(s)
Alkenes/chemistry , Models, Molecular , Quantum Theory , Zeolites/chemistry , Catalysis , Computer Simulation , Isomerism , Models, Chemical , Principal Component Analysis , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...