Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 316: 120996, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321718

ABSTRACT

Morphological characterization of microfibrillated cellulose (MFC) is critically important to process control in production and product specification for trade and product development yet is extremely difficult. This study evaluated several indirect methods for relative comparison of the morphology of lignin-free and lignin-containing ((L)MFCs). The (L)MFCs studied were produced using a commercial grinder through different passes from a dry lap bleached kraft eucalyptus pulp, a virgin mixed (maple and birch) unbleached kraft hardwood pulp, and two virgin-unbleached kraft softwood (loblolly pine) pulps with one bleachable grade (low lignin content) and one liner grade (high lignin content). The (L)MFCs were indirectly characterized using techniques based on water interactions, i.e., water retention value (WRV) and fibril suspension stability, as well as fibril properties, i.e., cellulose crystallinity and fine content. Optical microscopy and scanning electron microscopy were also applied to directly visualize the (L)MFCs to provide some objective measure of the morphology of the (L)MFCs. The results indicate that most measures such as WRV, cellulose crystallinity, fine content cannot be used to compare (L)MFCs from different pulp fibers. Measures based on water interactions such as (L)MFC WRV and suspension stability appeared can provide some degree of indirect assessment. This study provided the utilities and limits of these indirect methods for relative comparison of the morphologies of (L)MFCs.


Subject(s)
Cellulose , Lignin , Water , Microscopy, Electron, Scanning , Betula
2.
Biotechnol Biofuels ; 8: 22, 2015.
Article in English | MEDLINE | ID: mdl-25709715

ABSTRACT

BACKGROUND: Forest residue is one of the most cost-effective feedstock for biofuel production. It has relatively high bulk density and can be harvested year round, advantageous for reducing transportation cost and eliminating onsite storage. However, forest residues, especially those from softwood species, are highly recalcitrant to biochemical conversion. A severe pretreatment for removing this recalcitrance can result in increased sugar degradation to inhibitors and hence cause difficulties in fermentation at high solid loadings. Here, we presented high titer ethanol production from Douglas-fir forest residue without detoxification. The strong recalcitrance of the Douglas-fir residue was removed by sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL). Sugar degradation to inhibitors was substantially reduced using a novel approach of "pH profiling" by delaying acid application in pretreatment, which facilitated the simultaneous enzymatic saccharification and fermentation of undetoxified whole slurry at a solid loading of 21%. RESULTS: "pH profiling" reduced furan production by approximately 70% in using SPORL pretreating Douglas-fir forest residue (FS-10) comparing with the control run while without sacrificing enzymatic saccharification of the resultant substrate. pH profiling also reduced carbohydrate degradation. The improved carbohydrate yield in pretreated solids and reduced fermentation inhibitors with pH profiling resulted in a terminal ethanol titer of 48.9 ± 1.4 g/L and yield of 297 ± 9 L/tonne FS-10, which are substantially higher, i.e., by 27% in titer and by 38% in yield, than those of a control SPORL run without pH profiling. CONCLUSIONS: Economical and large-volume production of commodity biofuels requires the utilization of feedstocks with low value (therefore low cost) and sustainably producible in large quantities, such as forest residues. However, most existing pretreatment technologies cannot remove the strong recalcitrance of forest residues to produce practically fermentable high titer sugars. Here, we demonstrated a commercially scalable and efficient technology capable of removing the strong recalcitrant nature of forest residues using "pH profiling" together with "low temperature SPORL". The resultant pretreated whole slurry of a Douglas-fir forest residue using this technology can be easily processed at high solids of 21% without detoxification to achieve a high ethanol yield of 297 L/tonne at 48.9 g/L. Graphical AbstractGraphic table of content.

3.
Appl Microbiol Biotechnol ; 86(5): 1355-65, 2010 May.
Article in English | MEDLINE | ID: mdl-20072782

ABSTRACT

Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quais-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180 degrees C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance.


Subject(s)
Ethanol/chemistry , Pinus/chemistry , Wood/chemistry , Biofuels , Fermentation , Monosaccharides/chemistry , Polysaccharides/chemistry , Saccharomyces cerevisiae/metabolism , Sulfites , Sulfuric Acids , Wood/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...