Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(3): e17225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462708

ABSTRACT

It is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long-term grassland biodiversity experiment, we studied the effect of plant diversity (1-60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2-year drought event. Using split-plot treatments, we further tested whether a shared history of plants and soil influences the studied relationships. We calculated EMF based on functions related to plants and higher-trophic levels. Plant diversity enhanced EMF in all studied years, and this effect strengthened over the study period. Moreover, plant diversity increased the temporal stability of EMF and fostered resistance to reoccurring drought events. Old plant communities with shared plant and soil history showed a stronger plant diversity-multifunctionality relationship and higher temporal stability of EMF than younger communities without shared histories. Our results highlight the importance of old and biodiverse plant communities for EMF and its stability to extreme climate events in a world increasingly threatened by global change.


Subject(s)
Ecosystem , Grassland , Biodiversity , Plants , Soil
2.
Front Plant Sci ; 14: 1239600, 2023.
Article in English | MEDLINE | ID: mdl-38094000

ABSTRACT

Background: Tree mycorrhizal types (arbuscular mycorrhizal fungi and ectomycorrhizal fungi) alter nutrient use traits and leaf physicochemical properties and, thus, affect leaf litter decomposition. However, little is known about how different tree mycorrhizal species affect the microbial diversity, community composition, function, and community assembly processes that govern leaf litter-dwelling microbes during leaf litter decomposition. Methods: In this study, we investigated the microbial diversity, community dynamics, and community assembly processes of nine temperate tree species using high-resolution molecular technique (Illumina sequencing), including broadleaved arbuscular mycorrhizal, broadleaved ectomycorrhizal, and coniferous ectomycorrhizal tree types, during leaf litter decomposition. Results and discussion: The leaves and needles of different tree mycorrhizal types significantly affected the microbial richness and community composition during leaf litter decomposition. Leaf litter mass loss was related to higher sequence reads of a few bacterial functional groups, particularly N-fixing bacteria. Furthermore, a link between bacterial and fungal community composition and hydrolytic and/or oxidative enzyme activity was found. The microbial communities in the leaf litter of different tree mycorrhizal types were governed by different proportions of determinism and stochasticity, which changed throughout litter decomposition. Specifically, determinism (mainly variable selection) controlling bacterial community composition increased over time. In contrast, stochasticity (mainly ecological drift) increasingly governed fungal community composition. Finally, the co-occurrence network analysis showed greater competition between bacteria and fungi in the early stages of litter decomposition and revealed a contrasting pattern between mycorrhizal types. Conclusion: Overall, we conclude that tree mycorrhizal types influence leaf litter quality, which affects microbial richness and community composition, and thus, leaf litter decomposition.

3.
ISME J ; 17(5): 733-747, 2023 05.
Article in English | MEDLINE | ID: mdl-36841903

ABSTRACT

Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended ("sit and wait" strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity.


Subject(s)
Isoptera , Animals , Isoptera/microbiology , Biological Evolution , Acclimatization , Symbiosis/genetics , Fungi/genetics , Agriculture
4.
Glob Chang Biol ; 29(9): 2627-2639, 2023 05.
Article in English | MEDLINE | ID: mdl-36799509

ABSTRACT

Soils are important for ecosystem functioning and service provisioning. Soil communities and their functions, in turn, are strongly promoted by plant diversity, and such positive effects strengthen with time. However, plant diversity effects on soil organic matter have mostly been investigated in the topsoil, and there are only very few long-term studies. Thus, it remains unclear if plant diversity effects strengthen with time and to which depth these effects extend. Here, we repeatedly sampled soil to 1 m depth in a long-term grassland biodiversity experiment. We investigated how plant diversity impacted soil organic carbon and nitrogen concentrations and stocks and their stable isotopes 13 C and 15 N, as well as how these effects changed after 5, 10, and 14 years. We found that higher plant diversity increased carbon and nitrogen storage in the topsoil since the establishment of the experiment. Stable isotopes revealed that these increases were associated with new plant-derived inputs, resulting in less processed and less decomposed soil organic matter. In subsoils, mainly the presence of specific plant functional groups drove organic matter dynamics. For example, the presence of deep-rooting tall herbs decreased carbon concentrations, most probably through stimulating soil organic matter decomposition. Moreover, plant diversity effects on soil organic matter became stronger in topsoil over time and reached subsoil layers, while the effects of specific plant functional groups in subsoil progressively diminished over time. Our results indicate that after changing the soil system the pathways of organic matter transfer to the subsoil need time to establish. In our grassland system, organic matter storage in subsoils was driven by the redistribution of already stored soil organic matter from the topsoil to deeper soil layers, for example, via bioturbation or dissolved organic matter. Therefore, managing plant diversity may, thus, have significant implications for subsoil carbon storage and other critical ecosystem services.


Subject(s)
Carbon , Ecosystem , Soil , Biodiversity , Plants , Nitrogen
6.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35124727

ABSTRACT

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Subject(s)
Mycobiome , Trees , Trees/microbiology , Fungi , Plant Leaves/microbiology
7.
Front Plant Sci ; 13: 968218, 2022.
Article in English | MEDLINE | ID: mdl-36407586

ABSTRACT

Despite the abundance of observations of foliar pathogens, our knowledge is severely lacking regarding how the potential fungal pathobiome is structured and which processes determine community assembly. In this study, we addressed these questions by analysing the potential fungal pathobiome associated with the senescing leaves and needles of 12 temperate tree species. We compared fungal plant pathogen load in the senescing leaves/needles and demonstrated that healthy-looking leaves/needles are inhabited by diverse and distinct fungal plant pathogens. We detected 400 fungal plant pathogenic ASVs belonging to 130 genera. The fungal plant pathogenic generalist, Mycosphaerella, was found to be the potential most significant contributor to foliar disease in seedlings. The analyses of assembly process and co-occurrence network showed that the fungal plant pathogenic communities in different tree types are mainly determined by stochastic processes. However, the homogenising dispersal highly contributes in broadleaf trees, whereas ecological drift plays an important role in coniferious trees. The deterministic assembly processes (dominated by variable selection) contributed more in broadleaf trees as compared to coniferous trees. We found that pH and P level significantly corresponded with fungal plant pathogenic community compositions in both tree types. Our study provides the first insight and mechanistic understanding into the community assembly, networks, and complete taxonomy of the foliar fungal pathobiome in senescing leaves and needles.

8.
Front Microbiol ; 13: 907531, 2022.
Article in English | MEDLINE | ID: mdl-36187953

ABSTRACT

Currently, lichen surveys are generally based on the examination of fruiting bodies. Lichens in the mycelial stage, in spores, or awaiting conditions for fruiting body formation are usually overlooked, even though they are important for maintaining biodiversity and ecosystem functions. This study aimed to explore the lichenized fungal community composition and richness associated with leaves and needles of 12 temperate tree species using Illumina MiSeq-based amplicon sequencing of the internal transcribed spacer (ITS) 2 region. Picea abies harbored the highest richness and number of lichenized fungal species. We found that the lichenized fungus Physcia adscendens dominated the leaves and needles of the most temperate tree species. Eleven lichenized fungal species detected in this study were recorded for the first time on leaves and needles. In addition, we identified Athallia cerinella, Fellhanera bouteillei, and Melanohalea exasperata that are on the German national red lists. Lichenized fungal richness was higher in conifer compared to broadleaf trees. Overall, tree species (within coniferous trees) and tree types (broadleaved vs. coniferous trees) harbored significantly different lichenized fungal community compositions pointing out the importance of host species. Diversity and community composition patterns of lichenized fungi were correlated mainly with tree species. Our study demonstrates that the diversity of foliicolous lichens associated with leaves and needles of 12 temperate tree species can be appropriately analyzed and functionally assigned using the ITS-based high-throughput sequencing. We highlighted the importance of conifers for maintaining the biodiversity of foliicolous lichens. Based on the discovery of many red list lichens, our methodological approach and results are important contributions to subsequent actions in the bio-conversation approaches.

9.
Environ Sci Technol ; 56(15): 11027-11040, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834352

ABSTRACT

Ultrahigh-resolution Fourier transform mass spectrometry (FTMS) has revealed unprecedented details of natural complex mixtures such as dissolved organic matter (DOM) on a molecular formula level, but we lack approaches to access the underlying structural complexity. We here explore the hypothesis that every DOM precursor ion is potentially linked with all emerging product ions in FTMS2 experiments. The resulting mass difference (Δm) matrix is deconvoluted to isolate individual precursor ion Δm profiles and matched with structural information, which was derived from 42 Δm features from 14 in-house reference compounds and a global set of 11 477 Δm features with assigned structure specificities, using a dataset of ∼18 000 unique structures. We show that Δm matching is highly sensitive in predicting potential precursor ion identities in terms of molecular and structural composition. Additionally, the approach identified unresolved precursor ions and missing elements in molecular formula annotation (P, Cl, F). Our study provides first results on how Δm matching refines structural annotations in van Krevelen space but simultaneously demonstrates the wide overlap between potential structural classes. We show that this effect is likely driven by chemodiversity and offers an explanation for the observed ubiquitous presence of molecules in the center of the van Krevelen space. Our promising first results suggest that Δm matching can both unfold the structural information encrypted in DOM and assess the quality of FTMS-derived molecular formulas of complex mixtures in general.


Subject(s)
Dissolved Organic Matter , Spectrometry, Mass, Electrospray Ionization , Complex Mixtures , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods
10.
Sci Rep ; 12(1): 7451, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523988

ABSTRACT

Microbial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is well known that decomposer communities adapt to the available litter source, but it remains unclear if they functionally compete or synergistically address different litter types. Therefore, we decomposed beech, oak, pine and grass litter from two geologically distinct sites in a lab-scale decomposition experiment. We performed a correlative network analysis on the results of direct infusion HR-MS DOM analysis and cross-validated functional predictions from 16S rRNA gene amplicon sequencing and with DOM and metaproteomic analyses. Here we show that many functions are redundantly distributed within decomposer communities and that their relative expression is rapidly optimized to address litter-specific properties. However, community changes are likely forced by antagonistic mechanisms as we identified several natural antibiotics in DOM. As a consequence, the decomposer community is specializing towards the litter source and the state of decomposition (community divergence) but showing similar litter metabolomes (metabolome convergence). Our multi-omics-based results highlight that DOM not only fuels microbial life, but it additionally holds meta-metabolomic information on the functioning of ecosystems.


Subject(s)
Ecosystem , Microbiota , Dissolved Organic Matter , Microbiota/genetics , Plant Leaves/metabolism , Plants/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Soil , Soil Microbiology
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389667

ABSTRACT

Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.


Subject(s)
Carbon/metabolism , Picea/growth & development , Picea/metabolism , Stress, Physiological , Photosynthesis/physiology , Plant Physiological Phenomena , Plant Transpiration
12.
Nat Commun ; 12(1): 4431, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290234

ABSTRACT

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Subject(s)
Agriculture/methods , Biodiversity , Grassland , Phosphorus/metabolism , Agriculture/economics , Biomass , Fertilizers/economics , Latent Class Analysis , Mycorrhizae/classification , Mycorrhizae/metabolism , Phosphorus/analysis , Phosphorus/economics , Plants/classification , Plants/metabolism , Plants/microbiology , Soil/chemistry , Soil Microbiology
13.
Front Chem ; 9: 698067, 2021.
Article in English | MEDLINE | ID: mdl-35071178

ABSTRACT

We determined the kinetic isotope effect on the serine hydroxymethyltransferase reaction (SHMT), which provides important C1 metabolites that are essential for the biosynthesis of DNA bases, O-methyl groups of lignin and methane. An isotope effect on the SHMT reaction was suggested being responsible for the well-known isotopic depletion of methane. Using the cytosolic SHMT from pig liver, we measured the natural carbon isotope ratios of both atoms involved in the bond splitting by chemical degradation of the remaining serine before and after partial turnover. The kinetic isotope effect 13(VMax/Km) was 0.994 0.006 and 0.995 0.007 on position C-3 and C-2, respectively. The results indicated that the SHMT reaction does not contribute to the 13C depletion observed for methyl groups in natural products and methane. However, from the isotopic pattern of caffeine, isotope effects on the methionine synthetase reaction and on reactions forming Grignard compounds, the involved formation and fission of metal organic bonds are likely responsible for the observed general depletion of "activated" methyl groups. As metal organic bond formations in methyl transferases are also rate limiting in the formation of methane, they may likely be the origin of the known 13C depletion in methane.

14.
Microorganisms ; 8(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143231

ABSTRACT

Microbial communities play a key role for central biogeochemical cycles in the subsurface. Little is known about whether short-term seasonal drought and rewetting events influence the dominant microbes involved in C- and N-cycles. Here, we applied metaproteomics at different subsurface sites in winter, summer and autumn from surface litter layer, seepage water at increasing subsoil depths and remote located groundwater from two wells within the Hainich Critical Zone Exploratory, Germany. We observed changes in the dominance of microbial families at subsurface sampling sites with increasing distances, i.e., Microcoleaceae dominated in topsoil seepage, while Candidatus Brocadiaceae dominated at deeper and more distant groundwater wells. Nitrifying bacteria showed a shift in dominance from drought to rewetting events from summer by Nitrosomandaceae to autumn by Candidatus Brocadiaceae. We further observed that the reductive pentose phosphate pathway was a prominent CO2-fixation strategy, dominated by Woeseiaceae in wet early winter, which decreased under drought conditions and changed to a dominance of Sphingobacteriaceae under rewetting conditions. This study shows that increasing subsurface sites and rewetting event after drought alter the dominances of key subsurface microbes. This helps to predict the consequences of annual seasonal dynamics on the nutrient cycling microbes that contribute to ecosystem functioning.

15.
Nat Ecol Evol ; 4(12): 1602-1611, 2020 12.
Article in English | MEDLINE | ID: mdl-33020598

ABSTRACT

Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.


Subject(s)
Ecosystem , Plants , Biodiversity , Biomass , Carbon
16.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958662

ABSTRACT

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Subject(s)
Carbon/metabolism , Pinus sylvestris/metabolism , Soil/chemistry , Trees/metabolism , Carbon/analysis , Climate Change , Droughts , Ecosystem , Forests , Pinus sylvestris/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Rhizosphere , Trees/growth & development , Water/analysis , Water/metabolism
17.
Nat Ecol Evol ; 4(11): 1485-1494, 2020 11.
Article in English | MEDLINE | ID: mdl-32839545

ABSTRACT

A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity-ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity-ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity-ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust.


Subject(s)
Biodiversity , Ecosystem , Germany , Phylogeny , Plants
18.
Glob Chang Biol ; 26(8): 4366-4378, 2020 08.
Article in English | MEDLINE | ID: mdl-32343042

ABSTRACT

The supply of soil respiration with recent photoassimilates is an important and fast pathway for respiratory loss of carbon (C). To date it is unknown how drought and land-use change interactively influence the dynamics of recent C in soil-respired CO2 . In an in situ common-garden experiment, we exposed soil-vegetation monoliths from a managed and a nearby abandoned mountain grassland to an experimental drought. Based on two 13 CO2 pulse-labelling campaigns, we traced recently assimilated C in soil respiration during drought, rewetting and early recovery. Independent of grassland management, drought reduced the absolute allocation of recent C to soil respiration. Rewetting triggered a respiration pulse, which was strongly fuelled by C assimilated during drought. In comparison to the managed grassland, the abandoned grassland partitioned more recent C to belowground respiration than to root C storage under ample water supply. Interestingly, this pattern was reversed under drought. We suggest that these different response patterns reflect strategies of the managed and the abandoned grassland to enhance their respective resilience to drought, by fostering their resistance and recovery respectively. We conclude that while severe drought can override the effects of abandonment of grassland management on the respiratory dynamics of recent C, abandonment alters strategies of belowground assimilate investment, with consequences for soil-CO2 fluxes during drought and drought-recovery.


Subject(s)
Carbon , Droughts , Carbon Dioxide , Grassland , Soil
19.
Tree Physiol ; 40(7): 928-942, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32268379

ABSTRACT

A mechanistic understanding of how trees balance the trade-offs between growth, storage and defense is limited but crucial for predicting tree responses to abiotic and biotic stresses. Here we investigated how trees allocate storage of non-structural carbohydrates (NSC) to growth and constitutive and induced secondary metabolites (SM). We exposed Norway spruce (Picea abies) saplings to 5 weeks of complete darkness to induce light and/or carbon limitation and then applied methyl jasmonate (MeJA) to simulate biotic attack. We measured changes in biomass, NSC (sum of soluble sugars and starches), and constitutive and induced SM (sum of phenolic compounds and terpenoids) in current-year developing and previous-year mature needles and branches, as well as volatiles emitted from the canopy. Under darkness, NSC storage was preferentially used for constitutive biosynthesis of monoterpenes rather than biosynthesis of stilbenes and growth of developing organs, while SM stored in mature organs cannot be remobilized and recycled. Furthermore, MeJA-induced production of SM was constrained by low NSC availability in developing organs but not in mature organs grown in the dark. Emissions of volatiles were suppressed in the dark but after 1 h of re-illumination, emissions of both constitutive and induced monoterpene hydrocarbons recovered rapidly, whereas emissions of linalool and sesquiterpene produced via de novo synthesis did not recover. Our results highlight that light and/or carbon limitation may constrain constitutive and JA-induced biosynthesis of SM in coordination with growth, NSC storage and mobilization.


Subject(s)
Picea , Carbon , Norway , Terpenes , Trees
20.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Article in English | MEDLINE | ID: mdl-32094542

ABSTRACT

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Subject(s)
Ecosystem , Grassland , Biodiversity , Ecology , Humans , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...