Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Entomol Res ; 96(3): 295-304, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16768818

ABSTRACT

The utility of temperature gradient gel electrophoresis (TGGE) as a means of analysing the gut contents of predators was evaluated. Generalist predators consume multiple prey species and a species-specific primer approach may not always be a practical means of analysing predator responses to prey diversity in complex and biodiverse ecosystems. General invertebrate primers were used to amplify the gut contents of predators, generating banding patterns that identified component prey remains. There was no evidence of dominance of the polymerase chain reaction (PCR) by predator DNA. When applied to field samples of the carabid predator Pterostichus melanarius (Illiger) nine banding patterns were detected, including one for aphids. To further distinguish between species, group-specific primers were designed to separate species of earthworm and aphid. TGGE of the earthworm PCR products generated banding patterns that varied with haplotype in some species. Aphid and earthworm DNA could be detected in the guts of carabids for up to 24 h using TGGE. In P. melanarius, with low numbers of prey per insect gut (mean<3), interpretation of banding patterns proved to be tractable. Potential problems of interpretation of TGGE gels caused by multiple prey bands, cryptic bands, haplotype variation, taxonomic uncertainties (especially with regard to earthworms), secondary predation, scavenging and presence of parasites and parasitoids in the prey or the predators, are discussed. The results suggest that PCR, using combinations of general invertebrate and group-specific primers followed by TGGE, provides a potentially useful approach to the analysis of multiple uncharacterized prey in predators.


Subject(s)
Coleoptera/metabolism , Electrophoresis, Polyacrylamide Gel/veterinary , Invertebrates/classification , Invertebrates/metabolism , Animals , Aphids/genetics , Coleoptera/genetics , DNA Primers/chemistry , Digestion/physiology , Electron Transport Complex IV/genetics , Electrophoresis, Polyacrylamide Gel/methods , Female , Intestinal Mucosa/metabolism , Invertebrates/genetics , Male , Molecular Sequence Data , Oligochaeta/genetics , Polymerase Chain Reaction/veterinary , RNA, Ribosomal/genetics , Time Factors
2.
Mol Ecol ; 15(7): 1963-72, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16689911

ABSTRACT

The relative importance of the factors driving change in the population dynamics of nematodes in the soil is almost completely unknown. Top-down control by micro-arthropod predators may have a significant impact on nematode population dynamics. We report experiments showing that mites and Collembola were capable of reducing nematode numbers in the laboratory and were feeding on a targeted nematode species in the field. A PCR-based approach was developed for the detection of predation on three species of slug- and insect-pathogenic nematodes: Phasmarhabditis hermaphrodita, Heterorhabditis megidis and Steinernema feltiae. The collembolan Folsomia candida and the mesostigmatid mite Stratiolaelaps miles were employed as model predators to calibrate post-ingestion prey DNA detection times. Fragments of cytochrome oxidase I (COI) mtDNA were sequenced and species-specific primers were designed, amplifying 154-, 154- and 203-bp fragments for each of the nematode species. Detection times for nematode DNA within the guts of Collembola were longer than in mites, with half-lives (50% of samples testing positive) of 08.75 h and 05.03 h, respectively. F. candida significantly reduced numbers of the nematode H. megidis, with rates of predation of approximately 0.4 nematode infective juveniles per collembolan per hour over 10 h. Four taxa of field-caught micro-arthropod that had been exposed to the nematode P. hermaphrodita for a period of 12 h were analysed and significant numbers of three taxa tested positive. This is the first application of PCR techniques for the study of nematophagy and the first time these techniques have been used to measure predation on nematodes in the field.


Subject(s)
Arthropods/physiology , Predatory Behavior , Rhabditida/physiology , Soil , Animals , Arthropods/metabolism , DNA, Mitochondrial/analysis , Ecology/methods , Electron Transport Complex IV/genetics , Mites/physiology , Rhabditida/genetics , Sequence Analysis, DNA
3.
Bull Entomol Res ; 96(6): 637-45, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17201982

ABSTRACT

Environment-friendly farming techniques seek to increase invertebrate biodiversity in part with the intention of encouraging greater numbers of predators that will help to control crop pests. However, in theory, this effect may be negated if the availability of a greater abundance and diversity of alternative prey diverts predators away from feeding on pests. The hypothesis that access to alternative prey can lead to reduced pest suppression under semi-field conditions was tested. Alternative prey type and diversity were manipulated in 70 mesocosms over 7+ weeks in the presence of the carabid Pterostichus melanarius (Illiger), a known predator of slugs, and reproducing populations of the slug Deroceras reticulatum (Müller). Significantly fewer slugs survived where no alternative prey were provided. Maximum slug numbers and biomass were found in treatments containing either carabids plus a high diversity of alternative prey (many species of earthworm and three of Diptera larvae) or a single additional prey (blowfly larvae, Calliphora vomitoria Linnaeus). In these treatments slug numbers and biomass were as high as in plots lacking predators. The effects of alternative prey were taxon-specific. Alternative prey strongly affected carabid fitness in terms of biomass and egg load. The fittest predators (those with access to high alternative prey diversity or C. vomitoria larvae) reduced slug numbers the least. The mean individual slug weights were greater in treatments with alternative prey than where no alternative prey were provided to the carabids. These results suggest that pests may survive and reproduce more rapidly in patches where predators have access to alternative prey.


Subject(s)
Coleoptera/physiology , Ecosystem , Gastropoda , Pest Control, Biological/methods , Predatory Behavior , Animals , Body Size
4.
Mol Ecol ; 14(3): 819-27, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723673

ABSTRACT

DNA-based techniques are providing valuable new approaches to tracking predator-prey interactions. The gut contents of invertebrate predators can be analysed using species-specific primers to amplify prey DNA to confirm trophic links. The problem is that each predator needs to be analysed with primers for the tens of potential prey available at a field site, even though the mean number of species detected in each gut may be as few as one or two. Conducting all these PCRs (polymerase chain reactions) is a lengthy process, and effectively precludes the analysis of the hundreds of predators that might be required for a meaningful ecological study. We report a rapid, more sensitive and practical approach. Multiplex PCRs, incorporating fluorescent markers, were found to be effective at amplifying degraded DNA from predators' guts and could amplify mitochondrial DNA fragments from 10+ species simultaneously without 'drop outs'. The combined PCR products were then separated by size on polyacrylamide gels on an ABI377 sequencer. New primers to detect the remains of aphids, earthworms, weevils and molluscs in the guts of carabid predators were developed and characterized. The multiplex-sequencer approach was then applied to field-caught beetles, some of which contained DNA from as many as four different prey at once. The main prey detected in the beetles proved to be earthworms and molluscs, although aphids and weevils were also consumed. The potential of this system for use in food-web research is discussed.


Subject(s)
Food Chain , Gastrointestinal Contents/chemistry , Genetic Testing/methods , Invertebrates/genetics , Polymerase Chain Reaction/methods , Animals , DNA Primers , DNA, Mitochondrial/genetics , Fluorescent Dyes , Invertebrates/physiology , Nucleic Acid Amplification Techniques , Regression Analysis , Sequence Analysis, DNA , Species Specificity
5.
Insect Mol Biol ; 13(4): 413-21, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15271214

ABSTRACT

Phyllodecta (= Phratora) vulgatissima and P. vitellinae (Coleoptera: Chrysomelidae) are important pests of willows and poplars. Their differences in host species preference may provide a non-chemical control strategy for pest control. However, little is known about population structure with respect to hosts, regions or seasons. Using five microsatellites, 850 P. vulgatissima and 1100 P. vitellinae individuals, comprising 17 and 22 UK samples, respectively, were genotyped. High diversity was observed at all loci. Migrant numbers exchanged per generation (Nm) were high (2.1-12.6 for P. vulgatissima and 0.9-12.2 for P. vitellinae), suggesting high genetic exchange between samples. Estimates of population differentiation (FST) and analyses of the data using Bayesian methods (Partition and Structure) showed little evidence of subdivision in relation to geography, sampling time or host.


Subject(s)
Coleoptera/genetics , Coleoptera/physiology , Genetic Variation , Genetics, Population , Salix , Animals , Bayes Theorem , Gene Frequency , Genotype , Geography , Microsatellite Repeats/genetics , Population Dynamics , United Kingdom
6.
Bull Entomol Res ; 94(3): 235-44, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15191625

ABSTRACT

Field studies suggest that the generalist carabid predator and scavenger Pterostichus melanarius Illiger aggregates to patches with a higher density of slug prey. The mechanisms behind such aggregation are unknown. Experiments were conducted to test the hypothesis that they are responding to chemical cues. Electroantennograms (EAGs) showed no response by P. melanarius antennae to live, nematode-infected, injured or freshly killed slugs, but a strong response to dead slugs that had been allowed to decay for up to 48 h. Such a response would enable the beetles to find carrion in the field and may also, as dead prey are likely to be spatially correlated with live ones, provide a mechanism by which P. melanarius finds patches with a higher density of live slugs. Subsequent video analyses of P. melanarius responses to patches of slug mucus within arenas showed that beetles with intact antennae could detect these patches because they spent more time, and moved greater distances, within them and increased their rate of turning. Thus, at close range, P. melanarius used their antennae to detect slug mucus and hence, by implication, live slugs. The apparent contradiction between EAG data and behavioural experiments is discussed. Together these result confirm that P. melanariusdoes respond to chemical cues from its slug prey in ways that could lead to aggregation in areas of higher slug density in the field.


Subject(s)
Coleoptera/physiology , Mollusca/chemistry , Predatory Behavior/physiology , Animals , Coleoptera/growth & development , Female , Male , Mollusca/anatomy & histology , Population Dynamics
7.
Bull Entomol Res ; 93(3): 227-34, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12762864

ABSTRACT

The impact of predation by the generalist carabid beetle Pterostichus melanarius (Illiger) on populations of the field slug Deroceras reticulatum (Müller), and the effects of prey size on the predator-prey interaction, were measured under semi-field conditions. It was hypothesized that environmental heterogeneity would lead to very different patterns of comparative mortality than might be deduced from size choice experiments conducted in the laboratory. Results from outdoor mini-plots, emulating conditions in a field of wheat, demonstrated that P. melanarius significantly reduced numbers of slugs from all size classes, with no apparent preferences. This was in marked contrast to results from earlier laboratory studies, where this beetle fed preferentially on the smallest slugs. The slugs in the mini-plots ranged in size from 2-100 mg and the numbers in the mini-plot reflected the size frequency distribution in the field. Beetles in mini-plots containing high densities of slugs increased significantly in weight, in contrast to beetles in mini-plots with low slug density or no added slugs, which did not. Enzyme-linked immunosorbent assays (ELISA), using anti-slug monoclonal antibodies, showed that where there was a higher density of slugs there was more slug protein in the guts of the beetles. It was concluded that environmental heterogeneity probably provided a greater number and diversity of refugia for smaller than for larger slugs, counteracting laboratory-measured size preferences measured in arenas without refugia. These results have implications for a range of ecological studies involving inter- and intra-specific prey size choice, and emphasize the dangers of extrapolating from the laboratory to the field.


Subject(s)
Coleoptera/physiology , Mollusca/growth & development , Analysis of Variance , Animals , Coleoptera/growth & development , Enzyme-Linked Immunosorbent Assay , Population Density , Population Dynamics , Predatory Behavior
8.
Mol Ecol ; 9(9): 1279-92, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10972768

ABSTRACT

Earthworms provide a major potential source of alternative food for polyphagous predators, such as carabid beetles, that are natural enemies of slugs, aphids and other agricultural pests. Non-pest prey may foster larger numbers of natural enemies, which then help to control pests, or alternatively may help to divert the predators away from pest control. An earthworm-specific monoclonal antibody was developed to study carabid-earthworm interactions in the field and assess the role of earthworms as alternative prey. The antibody could identify as little at 7 ng of earthworm protein in an ELISA, and could detect earthworm remains in the foregut of the carabid beetle Pterostichus melanarius for 64 h after consumption. Thirty-six per cent of field-collected beetles contained earthworm remains. Quantities of earthworm proteins in the beetle foreguts were negatively related to total foregut biomass, suggesting that earthworm consumption increased as total prey availability declined. There was also a negative relationship between foregut biomass and beetle numbers, but both quantities and concentrations of earthworm proteins in beetle foreguts were positively related to beetle numbers. This suggests that as beetle activity-density increased, total prey availability declined, or, as prey availability declined, beetles spent more time searching. In these circumstances, beetles fed to a greater extent on earthworms, an acceptable but nonpreferred food item. Earthworms may, therefore, provide an ideal alternative prey for P. melanarius, helping to sustain it when pest numbers are low but allowing it to perform a 'lying-in-wait' strategy, ready to switch back to feeding on pests when they become available.


Subject(s)
Antibodies, Monoclonal , Coleoptera/physiology , Mollusca/pathogenicity , Oligochaeta/immunology , Oligochaeta/physiology , Plants, Edible/parasitology , Animals , Ecosystem , Mice , Predatory Behavior
9.
Transgenic Res ; 8(2): 95-103, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10481309

ABSTRACT

Transgenic Arabidopsis thaliana has been developed which expresses the oryzacystatin mutant OC-I delta 86, which is an inhibitor of the major proteinase present in the digestive gland of the slug, Deroceras reticulatum. When fed on leaf tissue from plants expressing this inhibitor the growth of juvenile slugs was significantly reduced by 31% compared with those feeding on control leaf tissue. Furthermore, while surviving slugs did not individually consume less when feeding on leaf tissue expressing OC-I delta 86, the total amount of leaf tissue eaten was 50% less, due to reduced survival of slugs. The synthetic cysteine proteinase inhibitors E-64 and leupeptin also significantly reduced slug weight gain (by at least 40%) and digestive gland cysteine proteinase activity when administered in an artificial diet, indicating that their antimetabolic effects are due to direct inhibition of gut proteolytic activity. These results suggest that transgenic crop plants expressing phytocystatins could be used to suppress the growth rates of slug populations in the field.


Subject(s)
Arabidopsis/metabolism , Cystatins , Cysteine Proteinase Inhibitors , Mollusca , Plants, Genetically Modified/metabolism , Animals , Arabidopsis/genetics , Cystatins/biosynthesis , Cysteine Proteinase Inhibitors/biosynthesis , Leucine/analogs & derivatives , Leucine/pharmacology , Leupeptins/pharmacology , Mollusca/enzymology , Mollusca/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Recombinant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...