Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17799, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853086

ABSTRACT

Over the last few decades, high-frequency ultrasound has found multiple applications in various diagnostic fields. The fast development of this imaging technique opens up new diagnostic paths in dermatology, allergology, cosmetology, and aesthetic medicine. In this paper, being the first in this area, we discuss the usability of HFUS in anti-aging skin therapy assessment. The fully automated algorithm combining high-quality image selection and entry echo layer segmentation steps followed by the dermal parameters estimation enables qualitative and quantitative evaluation of the effectiveness of anti-aging products. Considering the parameters of subcutaneous layers, the proposed framework provides a reliable tool for TCA-peel therapy assessment; however, it can be successfully applied to other skin-condition-related problems. In this randomized controlled clinical trial, forty-six postmenopausal women were randomly assigned to the experimental and control groups. Women were treated four times at one-week intervals and applied skin cream daily between visits. The three month follow-up study enables measurement of the long-term effect of the therapy. According to the results, the TCA-based therapy increased epidermal (entry echo layer) thickness, indicating that the thinning process has slowed down and the skin's condition has improved. An interesting outcome is the obtained growth in the intensity of the upper dermis in the experimental group, which might suggest a reduced photo-aging effect of TCA-peel and increased water content. The same conclusions connected with the anti-aging effect of TCA-peel can be drawn by observing the parameters describing the contribution of low and medium-intensity pixels in the upper dermis. The decreased share of low-intensity pixels and increased share of medium-intensity pixels in the upper dermis suggest a significant increase in local protein synthesis.


Subject(s)
Skin Aging , Humans , Female , Follow-Up Studies , Epidermis/diagnostic imaging , Ultrasonography/methods , Aging , Skin/diagnostic imaging
2.
Sensors (Basel) ; 22(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35214381

ABSTRACT

This study aims at high-frequency ultrasound image quality assessment for computer-aided diagnosis of skin. In recent decades, high-frequency ultrasound imaging opened up new opportunities in dermatology, utilizing the most recent deep learning-based algorithms for automated image analysis. An individual dermatological examination contains either a single image, a couple of pictures, or an image series acquired during the probe movement. The estimated skin parameters might depend on the probe position, orientation, or acquisition setup. Consequently, the more images analyzed, the more precise the obtained measurements. Therefore, for the automated measurements, the best choice is to acquire the image series and then analyze its parameters statistically. However, besides the correctly received images, the resulting series contains plenty of non-informative data: Images with different artifacts, noise, or the images acquired for the time stamp when the ultrasound probe has no contact with the patient skin. All of them influence further analysis, leading to misclassification or incorrect image segmentation. Therefore, an automated image selection step is crucial. To meet this need, we collected and shared 17,425 high-frequency images of the facial skin from 516 measurements of 44 patients. Two experts annotated each image as correct or not. The proposed framework utilizes a deep convolutional neural network followed by a fuzzy reasoning system to assess the acquired data's quality automatically. Different approaches to binary and multi-class image analysis, based on the VGG-16 model, were developed and compared. The best classification results reach 91.7% accuracy for the first, and 82.3% for the second analysis, respectively.


Subject(s)
Deep Learning , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...