Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 30(4): 1154-62, 2001.
Article in English | MEDLINE | ID: mdl-11476492

ABSTRACT

We attempted to restore native plants on disturbed sites at a former uranium mill on the Colorado Plateau near Tuba City, AZ. Four-wing saltbush [Atriplex canescens (Pursh) Nutt.] was successfully established in compacted caliche soil and in unconsolidated dune soil when transplants were irrigated through the first summer with 20 L/plant/wk. The caliche soil was ripped before planting to improve water-holding capacity. The diploid saltbush variety, angustifolia, had higher survival and growth than the common tetraploid variety, occidentalis, especially on dune soil. The angustifolia variety grew to 0.3 to 0.4 m3 per plant over 3 yr even though irrigation was provided only during the establishment year. By contrast, direct seeding of a variety of native forbs, grasses, and shrubs yielded poor results, despite supplemental irrigation throughout the first summer. In this arid environment (precipitation = 100 to 200 mm/yr), the most effective revegetation strategy is to establish keystone native shrubs, such as four-wing saltbush, using transplants and irrigation during the establishment year, rather than attempting to establish a diverse plant community all at once.


Subject(s)
Conservation of Natural Resources , Ecosystem , Plants , Environmental Pollution/prevention & control , Industry , Population Dynamics , Soil , Uranium , Water Supply
2.
Int J Occup Med Environ Health ; 14(3): 241-8, 2001.
Article in English | MEDLINE | ID: mdl-11764852

ABSTRACT

Development of environmentally benign approaches to remediation of metal-contaminated soils and sewage sludges are needed to replace currently used techniques of either landfilling or metal extraction using caustic or toxic agents. We report results from four application technologies that use a metal-chelating biosurfactant, rhamnolipid, for removal of metals or metal-associated toxicity from metal-contaminated waste. The four applications include: 1) removal of metals from sewage sludge; 2) removal of metals from historically contaminated soils; 3) combined biosurfactant/phytoremediation of metal-contaminated soil; and 4) use of biosurfactant to facilitate biodegradation of the organic component of a metal-organic co-contaminated soil (in this case the biosurfactant reduces metal toxicity). These four technologies are nondestructive options for situations where the final goal is the removal of bioavailable and leachable metal contamination while maintaining a healthy ecosystem. Some of the approaches outlined may require multiple treatments or long treatment times which must be acceptable to site land-use plans and to the stakeholders involved. However, the end-product is a soil, sediment, or sludge available for a broad range of land use applications.


Subject(s)
Environmental Health , Environmental Monitoring/methods , Metals, Heavy/analysis , Sewage/chemistry , Soil Pollutants/adverse effects , Soil Pollutants/analysis , Biotechnology , Humans , Metals, Heavy/adverse effects , Sensitivity and Specificity , Surface-Active Agents
3.
Ecotoxicol Environ Saf ; 46(3): 298-304, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10903827

ABSTRACT

The Cienega de Santa Clara, on the east side of the Colorado River delta, is a brackish wetland supported by agricultural drainage water from the United States that provides habitat for endangered fish and bird species. Bioaccumulation of selenium has created toxicity problems for wildlife in similar wetlands in the United States. This is the first selenium survey in the Cienega de Santa Clara. Ten sites were selected to collect water (dissolved), sediments (total), plants, invertebrates, and fish. Samples were collected from October 1996 to March 1997. Selenium was detected in all samples. Concentrations in water ranged from 5 to 19 microg/L and increased along a salinity gradient. Although water levels of selenium exceeded EPA criterion for protection of wildlife, levels in sediments (0.8-1.8 mg/kg), aquatic plants (0.03-0.17 mg/kg), and fish (2.5-5.1 mg/kg whole body, dry wt) did not exceed USFWS recommended levels. It is concluded from this study that the levels of selenium in water did not affect the overall health of the fish sampled. Therefore, it is important to maintain or improve the water quality entering this wetland to continue to have normal levels of Se in the food chain components.


Subject(s)
Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Fishes/metabolism , Fresh Water , Geologic Sediments , Mexico , Plants/metabolism , Selenium/analysis , Water Pollutants, Chemical/analysis
4.
Science ; 251(4997): 1065-7, 1991 Mar 01.
Article in English | MEDLINE | ID: mdl-17802093

ABSTRACT

The terrestrial halophyte, Salicornia bigelovii Torr., was evaluated as an oilseed crop for direct seawater irrigation during 6 years of field trials in an extreme coastal desert environment. Yields of seed and biomass equated or exceeded freshwater oilseed crops such as soybean and sunflower. The seed contained 26 to 33 percent oil, 31 percent protein, and was low in fiber and ash (5 to 7 percent). The oil and meal were extracted by normal milling equipment, and the oil was high in linoleic acid (73 to 75 percent) and could replace soybean oil in chicken diets. The meal had antigrowth factors, attributed to saponins, but could replace soybean meal in chicken diets amended with the saponin antagonist, cholesterol. Salicornia bigelovii appears to be a potentially valuable new oilseed crop for subtropical coastal deserts.

SELECTION OF CITATIONS
SEARCH DETAIL
...