Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655843

ABSTRACT

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Subject(s)
Callithrix , Genotype , Pedigree , Animals , Callithrix/genetics , Male , Female , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Inbreeding , Hair Follicle , Genotyping Techniques/methods , Genotyping Techniques/veterinary
2.
Sci Rep ; 13(1): 3467, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859458

ABSTRACT

Identification of potential therapeutic targets and biomarkers indicative of burden of early atherosclerosis that occur prior to advancement to life-threatening unstable plaques is the key to eradication of CAD prevalence and incidences. We challenged 16 baboons with a high cholesterol, high fat diet for 2 years and evaluated early-stage atherosclerotic lesions (fatty streaks, FS, and fibrous plaques, FP) in formalin-fixed common iliac arteries (CIA). We used small RNA sequencing to identify expressed miRNAs in CIA and in baseline blood samples of the same animals. We found 412 expressed miRNAs in CIA and 356 in blood samples. Eight miRNAs (miR-7975, -486-5p, -451a, -191-5p, -148a-3p, -17-5p, -378c, and -144-3p) were differentially expressed between paired fatty streak lesion and no-lesion sites of the tissue, and 27 miRNAs (e.g., miR-92a-3p, -5001, -342-3p, miR-28-3p, -21-5p, -221-3p, 146a-5p, and -16-5p) in fibrous plaques. The expression of 14 blood miRNAs significantly correlated with extent of lesions and the number of plaques. We identified coordinately regulated miRNA-gene networks in which miR-17-5p and miR-146a-5p are central hubs and miR-5001 and miR-7975 are potentially novel miRNAs associated with early atherosclerosis. In summary, we have identified miRNAs expressed in lesions and in blood that correlate with lesion burden and are potential therapeutic targets and biomarkers. These findings are a first step in elucidating miRNA regulated molecular mechanisms that underlie early atherosclerosis in a baboon model, enabling translation of our findings to humans.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Humans , Aorta, Abdominal , Biomarkers , Diet, High-Fat , Papio , Plaque, Amyloid
3.
J Dev Orig Health Dis ; 14(3): 381-388, 2023 06.
Article in English | MEDLINE | ID: mdl-36924159

ABSTRACT

Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity in MNR was reflected in greater abundances of transcript splice variant isoforms in the MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort to adapt to the poor in utero environment and ensure near-normal development and energy metabolism. This study is the first to study developmental programming across four critical gestational stages during primate fetal liver development and reveals a potentially novel cellular response mechanism mediating fetal programming in response to MNR.


Subject(s)
Fetal Development , Nutrients , Pregnancy , Animals , Female , Fetal Development/genetics , Papio , Liver/metabolism , Fatty Acids/metabolism
4.
Physiol Genomics ; 54(11): 443-454, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36062883

ABSTRACT

Blood pressure (BP) is influenced by genetic variation and sodium intake with sex-specific differences; however, studies to identify renal molecular mechanisms underlying the influence of sodium intake on BP in nonhuman primates (NHP) have focused on males. To address the gap in our understanding of molecular mechanisms regulating BP in female primates, we studied sodium-naïve female baboons (n = 7) fed a high-sodium (HS) diet for 6 wk. We hypothesized that in female baboons variation in renal transcriptional networks correlates with variation in BP response to a high-sodium diet. BP was continuously measured for 64-h periods throughout the study by implantable telemetry devices. Sodium intake, blood samples for clinical chemistries, and ultrasound-guided kidney biopsies were collected before and after the HS diet for RNA-Seq and bioinformatic analyses. We found that on the LS diet but not the HS diet, sodium intake and serum 17 ß-estradiol concentration correlated with BP. Furthermore, kidney transcriptomes differed by diet-unbiased weighted gene coexpression network analysis revealed modules of genes correlated with BP on the HS diet but not the LS diet. Our results showed variation in BP on the HS diet correlated with variation in novel kidney gene networks regulated by ESR1 and MYC; i.e., these regulators have not been associated with BP regulation in male humans or rodents. Validation of the mechanisms underlying regulation of BP-associated gene networks in female NHP will inform better therapies toward greater precision medicine for women.


Subject(s)
Hypertension , Sodium, Dietary , Animals , Female , Male , Humans , Blood Pressure/genetics , Transcriptome/genetics , Kidney , Kidney Cortex , Diet , Sodium , Papio , Sodium Chloride, Dietary
5.
Front Cell Infect Microbiol ; 12: 880860, 2022.
Article in English | MEDLINE | ID: mdl-35493734

ABSTRACT

Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Immunity, Cellular , Male , Papio , Viremia
6.
J Orthop Res ; 40(8): 1827-1833, 2022 08.
Article in English | MEDLINE | ID: mdl-34799865

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and circulate in the blood, making them attractive biomarkers of disease state for tissues like bone that are challenging to interrogate directly. Here, we report on five miRNAs-miR-197-3p, miR-320a, miR-320b, miR-331-5p, and miR-423-5p-associated with bone mineral density (BMD) in 147 healthy adult baboons. These baboons ranged in age from 15 to 25 years (45-75 human equivalent years) and 65% were female with a broad range of BMD values including a minority of osteopenic animals. miRNAs were generated via RNA sequencing from buffy coats collected at necropsy and areal BMD (aBMD) measured postmortem via dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae. Differential expression analysis controlled for the underlying pedigree structure of these animals to account for genetic variation which may drive miRNA abundance and aBMD values. While many of these miRNAs have been associated with the risk of osteoporosis in humans, this finding is of interest because the cohort represents a model of normal aging and bone metabolism rather than a disease cohort. The replication of miRNA associations with osteoporosis or other bone metabolic disorders in animals with healthy aBMD suggests an overlap in normal variation and disease states. We suggest that these miRNAs are involved in the regulation of cellular proliferation, apoptosis, and protein composition in the extracellular matrix throughout life; and age-related dysregulation of these systems may lead to disease. These miRNAs may be early indicators of progression to disease in advance of clinically detectible osteoporosis.


Subject(s)
Circulating MicroRNA , MicroRNAs , Osteoporosis , Aging , Animals , Bone Density , Female , Humans , Male , Papio/genetics
7.
BMC Genomics ; 22(1): 870, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34861817

ABSTRACT

BACKGROUND: Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. RESULTS: We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. CONCLUSIONS: Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.


Subject(s)
Insulin Resistance , Sirtuins , Animals , Chlorocebus aethiops , Diet , Fructose , Liver
8.
PLoS One ; 15(6): e0232200, 2020.
Article in English | MEDLINE | ID: mdl-32497066

ABSTRACT

Schizophrenia is a debilitating disorder affecting just under 1% of the population. While the symptoms of this disorder do not appear until late adolescence, pathological alterations likely occur earlier, during development in utero. While there is an increasing literature examining transcriptome alterations in patients, it is not possible to examine the changes in gene expression that occur during development in humans that will develop schizophrenia. Here we utilize three distinct rodent developmental disruption models of schizophrenia to examine potential overlapping alterations in the transcriptome, with a specific focus on markers of interneuron development. Specifically, we administered either methylazoxymethanol acetate (MAM), Polyinosinic:polycytidylic acid (Poly I:C), or chronic protein malnutrition, on GD 17 and examined mRNA expression in the developing hippocampus of the offspring 18 hours later. Here, we report alterations in gene expression that may contribute to the pathophysiology of schizophrenia, including significant alterations in interneuron development and ribosome function.


Subject(s)
Gene Expression Profiling , Growth and Development , Schizophrenia/genetics , Animals , Behavior, Animal , Disease Models, Animal , Female , Growth and Development/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Malnutrition/complications , Methylazoxymethanol Acetate/pharmacology , Poly I-C/pharmacology , Pregnancy , Rats , Rats, Sprague-Dawley , Schizophrenia/etiology , Schizophrenia/physiopathology
9.
Genome Res ; 29(5): 848-856, 2019 05.
Article in English | MEDLINE | ID: mdl-30926611

ABSTRACT

Baboons (genus Papio) are broadly studied in the wild and in captivity. They are widely used as a nonhuman primate model for biomedical studies, and the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute has maintained a large captive baboon colony for more than 50 yr. Unlike other model organisms, however, the genomic resources for baboons are severely lacking. This has hindered the progress of studies using baboons as a model for basic biology or human disease. Here, we describe a data set of 100 high-coverage whole-genome sequences obtained from the mixed colony of olive (P. anubis) and yellow (P. cynocephalus) baboons housed at the SNPRC. These data provide a comprehensive catalog of common genetic variation in baboons, as well as a fine-scale genetic map. We show how the data can be used to learn about ancestry and admixture and to correct errors in the colony records. Finally, we investigated the consequences of inbreeding within the SNPRC colony and found clear evidence for increased rates of infant mortality and increased homozygosity of putatively deleterious alleles in inbred individuals.


Subject(s)
Papio anubis/genetics , Papio cynocephalus/genetics , Alleles , Animals , Female , Genetic Variation , Genotype , Inbreeding , Male , Recombination, Genetic , Whole Genome Sequencing
10.
PLoS One ; 14(3): e0213494, 2019.
Article in English | MEDLINE | ID: mdl-30875406

ABSTRACT

RATIONALE: Plasma low-density lipoprotein cholesterol (plasma LDL-C), vascular endothelial cells and peripheral blood mononuclear cells (PBMCs), particularly monocytes, play key roles in initiating atherosclerosis, the primary cause of cardiovascular disease (CVD). Although the mechanisms underlying development of atherosclerosis are not well understood, LDL-C is known to influence expression of endothelial microRNAs (miRNAs) and gene-targets of miRNAs to promote cell senescence. However, the impact of LDL-C on expression of PBMC miRNAs and miRNA targeted genes in response to an atherogenic diet is not known. In this study, we used unbiased methods to identify coordinately responsive PBMC miRNA- gene networks that differ between low and high LDL-C baboons when fed a high-cholesterol, high-fat (HCHF) diet. METHODS AND RESULTS: Using RNA Seq, we quantified PBMC mRNAs and miRNAs from half-sib baboons discordant for LDL-C plasma concentrations (low LDL-C, n = 3; high LDL-C, n = 3) before and after a 7-week HCHF diet challenge. For low LDL-C baboons, 626 genes exhibited significant change in expression (255 down-regulated, 371 up-regulated) in response to the HCHF diet, and for high LDL-C baboons 379 genes exhibited significant change in expression (162 down-regulated, 217 up-regulated) in response to the HCHF diet. We identified 494 miRNAs identical to human miRNAs and 47 novel miRNAs. Fifty miRNAs were differentially expressed in low LDL-C baboons (21 up- and 29 down-regulated) and 20 in high LDL-C baboons (11 up- and 9 down-regulated) in response to the HCHF diet. Among the differentially expressed miRNAs were miR-221/222 and miR-34a-3p, which were down-regulated, and miR-148a/b-5p, which was up-regulated. In addition, gene-targets of these miRNAs, VEGFA, MAML3, SPARC, and DMGDH, were inversely expressed and are central hub genes in networks and signaling pathways that differ between low and high LDL-C baboon HCHF diet response. CONCLUSIONS: We have identified coordinately regulated HCHF diet-responsive PBMC miRNA-gene networks that differ between baboons discordant for LDL-C concentrations. Our findings provide potential insights into molecular mechanisms underlying initiation of atherosclerosis where LDL-C concentrations influence expression of specific miRNAs, which in turn regulate expression of genes that play roles in initiation of lesions.


Subject(s)
Cholesterol, LDL/biosynthesis , Dietary Fats/pharmacology , Gene Expression Regulation/drug effects , Leukocytes, Mononuclear/metabolism , MicroRNAs/biosynthesis , Animals , Papio
11.
Sci Rep ; 9(1): 246, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670706

ABSTRACT

Trophoblast oxidative phosphorylation provides energy for active transport and protein synthesis, which are critical placental functions influencing fetal growth and long-term health. The molecular mechanisms regulating trophoblast mitochondrial oxidative phosphorylation are largely unknown. We hypothesized that mechanistic Target of Rapamycin Complex 1 (mTORC1) is a positive regulator of key genes encoding Electron Transport Chain (ETC) proteins and stimulates oxidative phosphorylation in trophoblast and that ETC protein expression is down-regulated in placentas of infants with intrauterine growth restriction (IUGR). We silenced raptor (mTORC1 inhibition), rictor (mTORC2 inhibition) or DEPTOR (mTORC1/2 activation) in cultured term primary human trophoblast (PHT) cells. mTORC1 inhibition caused a coordinated down-regulation of 18 genes encoding ETC proteins representing all ETC complexes. Inhibition of mTORC1, but not mTORC2, decreased protein expression of ETC complexes I-IV, mitochondrial basal, ATP coupled and maximal respiration, reserve capacity and proton leak, whereas activation of mTORC1 had the opposite effects. Moreover, placental protein expression of ETC complexes was decreased and positively correlated to mTOR signaling activity in IUGR. By controlling trophoblast ATP production, mTORC1 links nutrient and O2 availability and growth factor signaling to placental function and fetal growth. Reduced placental mTOR activity may impair mitochondrial respiration and contribute to placental insufficiency in IUGR pregnancies.


Subject(s)
Fetal Growth Retardation/genetics , Gene Expression Regulation, Developmental , Mechanistic Target of Rapamycin Complex 1/metabolism , Placental Insufficiency/genetics , Trophoblasts/cytology , Adult , Cells, Cultured , Electron Transport/genetics , Female , Fetal Growth Retardation/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 2 , Mitochondria/metabolism , Organelle Biogenesis , Oxidative Phosphorylation , Placental Insufficiency/pathology , Pregnancy , Primary Cell Culture , RNA Interference , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction/genetics , Trophoblasts/metabolism , Young Adult
12.
J Med Primatol ; 47(3): 157-171, 2018 06.
Article in English | MEDLINE | ID: mdl-29603257

ABSTRACT

BACKGROUND: Little is known about the repertoire of non-human primate kidney genes expressed throughout development. The present work establishes an understanding of the primate renal transcriptome during fetal development in the context of renal maturation. METHODS: The baboon kidney transcriptome was characterized at 60-day gestation (DG), 90 DG, 125 DG, 140 DG, 160 DG and adulthood (6-12 years) using gene arrays and validated by QRT-PCR. Pathway and cluster analyses were used to characterize gene expression in the context of biological pathways. RESULTS: Pathway analysis indicated activation of pathways not previously reported as relevant to kidney development. Cluster analysis also revealed gene splice variants with discordant expression profiles during development. CONCLUSIONS: This study provides the first detailed genetic analysis of the developing primate kidney, and our findings of discordant expression of gene splice variants suggest that gene arrays likely provide a simplified view and demonstrate the need to study the fetal renal proteome.


Subject(s)
Fetal Development/genetics , Kidney/growth & development , Papio hamadryas/genetics , Transcriptome , Animals , Kidney/embryology , Papio hamadryas/embryology , Papio hamadryas/growth & development , RNA, Messenger/genetics
13.
J Physiol ; 596(23): 5823-5837, 2018 12.
Article in English | MEDLINE | ID: mdl-29516496

ABSTRACT

KEY POINTS: Maternal obesity (MO) and exposure to a high-fat, high-simple-carbohydrate diet during pregnancy predisposes offspring to obesity, metabolic and cardiovascular disorders in later life. Underlying molecular pathways and potential epigenetic factors that are dysregulated in MO were identified using unbiased transcriptomic methods. There was increased lipid accumulation and severe steatosis in the MO baboon fetal liver suggesting that these offspring are on an early trajectory of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ABSTRACT: Maternal obesity (MO) increases offspring cardiometabolic disease risk. Altered fetal liver development in response to the challenge of MO has metabolic consequences underlying adverse offspring life-course health outcomes. Little is known about the molecular pathways and potential epigenetic changes regulating primate fetal liver responses to MO. We hypothesized that MO would induce fetal baboon liver epigenetic changes resulting in dysregulation of key metabolic pathways that impact lipid metabolism. MO was induced prior to pregnancy by a high-fat, high-fructose diet. Unbiased gene and microRNA (small RNA Seq) abundance analyses were performed on fetal baboon livers at 0.9 gestation and subjected to pathway analyses to identify fetal liver molecular responses to MO. Fetal baboon liver lipid and glycogen content were quantified by the Computer Assisted Stereology Toolbox. In response to MO, fetal livers revealed dysregulation of TCA cycle, proteasome, oxidative phosphorylation, glycolysis and Wnt/ß-catenin signalling pathways together with marked lipid accumulation supporting our hypothesis that multiple pathway dysregulation detrimentally impacts lipid management. This is the first study of MO programming of the non-human primate fetal liver using unbiased transcriptome analysis to detect changes in hepatic gene expression levels and identify potential microRNA epigenetic regulators of metabolic disruption.


Subject(s)
Fetus/metabolism , Liver/metabolism , Obesity/genetics , Obesity/metabolism , Animals , Epigenesis, Genetic , Female , Fetal Development , Gene Expression Regulation, Developmental , Lipid Metabolism , Male , Maternal Nutritional Physiological Phenomena , MicroRNAs , Papio , Pregnancy , Signal Transduction
14.
BMC Genomics ; 18(1): 877, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132314

ABSTRACT

BACKGROUND: Shotgun proteomics utilizes a database search strategy to compare detected mass spectra to a library of theoretical spectra derived from reference genome information. As such, the robustness of proteomics results is contingent upon the completeness and accuracy of the gene annotation in the reference genome. For animal models of disease where genomic annotation is incomplete, such as non-human primates, proteogenomic methods can improve the detection of proteins by incorporating transcriptional data from RNA-Seq to improve proteomics search databases used for peptide spectral matching. Customized search databases derived from RNA-Seq data are capable of identifying unannotated genetic and splice variants while simultaneously reducing the number of comparisons to only those transcripts actively expressed in the tissue. RESULTS: We collected RNA-Seq and proteomic data from 10 vervet monkey liver samples and used the RNA-Seq data to curate sample-specific search databases which were analyzed in the program Morpheus. We compared these results against those from a search database generated from the reference vervet genome. A total of 284 previously unannotated splice junctions were predicted by the RNA-Seq data, 92 of which were confirmed by peptide spectral matches. More than half (53/92) of these unannotated splice variants had orthologs in other non-human primates, suggesting that failure to match these peptides in the reference analyses likely arose from incomplete gene model information. The sample-specific databases also identified 101 unique peptides containing single amino acid substitutions which were missed by the reference database. Because the sample-specific searches were restricted to actively expressed transcripts, the search databases were smaller, more computationally efficient, and identified more peptides at the empirically derived 1 % false discovery rate. CONCLUSION: Proteogenomic approaches are ideally suited to facilitate the discovery and annotation of proteins in less widely studies animal models such as non-human primates. We expect that these approaches will help to improve existing genome annotations of non-human primate species such as vervet.


Subject(s)
Mass Spectrometry , Proteomics/methods , Sequence Analysis, RNA , Animals , Chlorocebus aethiops , Databases, Genetic , Molecular Sequence Annotation , Proteomics/standards , Reference Standards
15.
Genomics ; 107(6): 267-73, 2016 06.
Article in English | MEDLINE | ID: mdl-27184763

ABSTRACT

Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges.


Subject(s)
DNA-Binding Proteins/genetics , Galactokinase/genetics , Phosphopyruvate Hydratase/genetics , Proteomics/methods , Saccharomyces cerevisiae Proteins/genetics , Chromatin/genetics , Chromatin Immunoprecipitation/methods , Promoter Regions, Genetic , Protein Binding/genetics , Saccharomyces cerevisiae/genetics
16.
J Nutr ; 143(11): 1698-708, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24047701

ABSTRACT

Maternal undernutrition increases the risk of perinatal complications and predisposes offspring to obesity, diabetes, and cardiovascular disease later in life. Emerging evidence suggests that changes in placental function play a role in linking altered maternal nutrition in pregnancy to the subsequent development of adult disease. The susceptibility for disease in response to an adverse intrauterine environment differs distinctly between boys and girls, with girls typically having better outcomes. Here, we tested the hypothesis that regulation of the placental transcriptome by maternal nutrient reduction (NR) is dependent on fetal sex. We used a nonhuman primate model of NR in which maternal global food intake was reduced by 30% in baboons starting at gestational day (GD) 30. At GD 165 (term = GD 183), placental genome expression profiling of 6 control (n = 3 females, 3 males) and 6 nutrient restricted (n = 3 females, 3 males) fetuses was carried out followed by bioinformatic analysis. Surprisingly, there was no coordinated placental molecular response to decreased nutrient availability when analyzing the data without accounting for fetal sex. In contrast, female placentas exhibited a highly coordinated response that included upregulation of genes in networks, pathways, and functional groups related to programmed cell death and downregulation of genes in networks, pathways, and functional groups associated with cell proliferation. These changes were not apparent in the male placentas. Our data support the concept that female placentas initiate complex adaptive responses to an adverse intrauterine environment, which may contribute to increased survival and better pregnancy outcomes in girls.


Subject(s)
Maternal Nutritional Physiological Phenomena , Papio/embryology , Papio/metabolism , Placenta/metabolism , Pregnancy, Animal/metabolism , Transcriptome , Animals , Caspase 3/genetics , Caspase 3/metabolism , Female , Immunohistochemistry , Male , Pregnancy , Reproducibility of Results , Sex Factors , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
17.
PLoS One ; 8(4): e57563, 2013.
Article in English | MEDLINE | ID: mdl-23637735

ABSTRACT

The baboon is an invaluable model for the study of human health and disease, including many complex diseases of the kidney. Although scientists have made great progress in developing this animal as a model for numerous areas of biomedical research, genomic resources for the baboon, such as a quality annotated genome, are still lacking. To this end, we characterized the baboon kidney transcriptome using high-throughput cDNA sequencing (RNA-Seq) to identify genes, gene variants, single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (InDels), cellular functions, and key pathways in the baboon kidney to provide a genomic resource for the baboon. Analysis of our sequencing data revealed 45,499 high-confidence SNPs and 29,813 InDels comparing baboon cDNA sequences with the human hg18 reference assembly and identified 35,900 cDNAs in the baboon kidney, including 35,150 transcripts representing 15,369 genic genes that are novel for the baboon. Gene ontology analysis of our sequencing dataset also identified numerous biological functions and canonical pathways that were significant in the baboon kidney, including a large number of metabolic pathways that support known functions of the kidney. The results presented in this study catalogues the transcribed mRNAs, noncoding RNAs, and hypothetical proteins in the baboon kidney and establishes a genomic resource for scientists using the baboon as an experimental model.


Subject(s)
Gene Expression Profiling , Kidney/metabolism , Sequence Analysis, RNA , Animals , Chromosome Mapping , Databases, Genetic , Female , Humans , INDEL Mutation , Male , Organ Specificity , Papio , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Reference Standards
18.
J Lipid Res ; 54(7): 1776-85, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23596326

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death in developed countries, and dyslipidemia is a major risk factor for CVD. We previously identified a cluster of quantitative trait loci (QTL) on baboon chromosome 11 for multiple, related quantitative traits for serum LDL-cholesterol (LDL-C). Here we report differentially regulated hepatic genes encoding an LDL-C QTL that influences LDL-C levels in baboons. We performed hepatic whole-genome expression profiling for LDL-C-discordant baboons fed a high-cholesterol, high-fat (HCHF) diet for seven weeks. We detected expression of 117 genes within the QTL 2-LOD support interval. Three genes were differentially expressed in low LDL-C responders and 8 in high LDL-C responders in response to a HCHF diet. Seven genes (ACVR1B, CALCOCO1, DGKA, ERBB3, KRT73, MYL6B, TENC1) showed discordant expression between low and high LDL-C responders. To prioritize candidate genes, we integrated miRNA and mRNA expression profiles using network tools and found that four candidates (ACVR1B, DGKA, ERBB3, TENC1) were miRNA targets and that the miRNAs were inversely expressed to the target genes. Candidate gene expression was validated using QRT-PCR and Western blotting. This study reveals candidate genes that influence variation in LDL-C in baboons and potential genetic mechanisms for further investigation.


Subject(s)
Cholesterol, LDL/genetics , Quantitative Trait Loci/genetics , Animals , Blotting, Western , Cholesterol, LDL/blood , Gene Expression Profiling , Papio/genetics , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
19.
BMC Genomics ; 13: 320, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22809019

ABSTRACT

BACKGROUND: Dysregulation of microRNA (miRNA) expression has been implicated in molecular genetic events leading to the progression and development of atherosclerosis. We hypothesized that miRNA expression profiles differ between baboons with low and high serum low-density lipoprotein cholesterol (LDL-C) concentrations in response to diet, and that a subset of these miRNAs regulate genes relevant to dyslipidemia and risk of atherosclerosis. RESULTS: Using Next Generation Illumina sequencing methods, we sequenced hepatic small RNA libraries from baboons differing in their LDL-C response to a high-cholesterol, high-fat (HCHF) challenge diet (low LDL-C, n = 3; high LDL-C, n = 3), resulting in 517 baboon miRNAs: 490 were identical to human miRNAs and 27 were novel. We compared miRNA expression profiles from liver biopsies collected before and after the challenge diet and observed that HCHF diet elicited expression of more miRNAs compared to baseline (chow) diet for both low and high LDL-C baboons. Eighteen miRNAs exhibited differential expression in response to HCHF diet in high LDL-C baboons compared to 10 miRNAs in low LDL-C baboons. We used TargetScan/Base tools to predict putative miRNA targets; miRNAs expressed in high LDL-C baboons had significantly more gene targets than miRNAs expressed in low LDL-C responders. Further, we identified miRNA isomers and other non-coding RNAs that were differentially expressed in response to the challenge diet in both high LDL-C and low LDL-C baboons. CONCLUSIONS: We sequenced and annotated baboon liver miRNAs from low LDL-C and high LDL-C responders using high coverage Next Gen sequencing methods, determined expression changes in response to a HCHF diet challenge, and predicted target genes regulated by the differentially expressed miRNAs. The identified miRNAs will enrich the database for non-coding small RNAs including the extent of variation in these sequences. Further, we identified other small non-coding RNAs differentially expressed in response to diet. Our discovery of differentially expressed baboon miRNAs in response to a HCHF diet challenge that differ by LDL-C phenotype is a fundamental step in understating the role of non-coding RNAs in dyslipidemia.


Subject(s)
Cholesterol, Dietary/metabolism , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Gene Expression Regulation , Liver/metabolism , MicroRNAs/genetics , Animals , Biopsy , Diet, High-Fat , Gene Expression Profiling , Humans , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , Papio , Sequence Analysis, DNA
20.
J Physiol ; 590(12): 2873-84, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22508961

ABSTRACT

The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.


Subject(s)
Fetal Heart/metabolism , Genome , Transcriptome , Animals , Cattle , Female , Fetal Heart/chemistry , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Polymorphism, Single Nucleotide/genetics , Pregnancy , Pregnancy, Multiple , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Untranslated/biosynthesis , RNA, Untranslated/genetics , Sequence Alignment , Sheep, Domestic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...