Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1639: 461926, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33535113

ABSTRACT

Here, overloaded concentration profiles were predicted in supercritical fluid chromatography using a combined two-dimensional heat and mass transfer model. The heat balance equation provided the temperature and pressure profiles inside the column. From this the density, viscosity, and mobile phase velocity profiles in the column were calculated. The adsorption model is here expressed as a function of the density and temperature of the mobile phase. The model system consisted of a Kromasil Diol column packed with 2.2-µm particles (i.e., a UHPSFC column) and the solute was phenol eluted with neat carbon dioxide at three different outlet pressures and five different mobile phase flow rates. The proposed model successfully predicted the eluted concentration profiles in all experimental runs with good agreement even with high-density drops along the column. It could be concluded that the radial temperature and density gradients did not significantly influence the overloaded concentration elution profiles.


Subject(s)
Chromatography, Supercritical Fluid/methods , Adsorption , Computer Simulation , Hot Temperature , Models, Theoretical , Pressure , Solutions , Temperature , Viscosity
2.
Anal Chem ; 92(23): 15429-15436, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33170667

ABSTRACT

In supercritical fluid chromatography (SFC), the retention of a solute depends on the temperature, density, pressure, and cosolvent fraction. Here, we investigate how the adsorption of the cosolvent MeOH changes with pressure and temperature and how this affects the retention of several solutes. The lower the pressure, the stronger the MeOH adsorption to the stationary phase; in addition, at low pressure, perturbing the pressure results in significant changes in the amounts of MeOH adsorbed to the stationary phase. The robustness of the solute retention was lowest when operating the systems at low pressures, high temperatures, and low cosolvent fractions in the eluent. Here, we found a clear relationship between the sensitivity of MeOH adsorption to the stationary phase and the robustness of the separation system. Finally, we show that going from classical SFC to ultrahigh-performance SFC (UHPSFC), that is, separations conducted with much smaller packing diameters, results in retention factors that are more sensitive to fluctuations in the flow rate than with traditional SFC. The calculated density profiles indicate only a slight density drop over the traditional SFC column (3%, visualized as lighter → darker blue in the TOC), whereas the drop for the UHPSFC one was considerably larger (20%, visualized as dark red → light green in the TOC). The corresponding temperature drops were calculated to be 0.8 and 6.5 °C for the SFC and UHPSFC systems, respectively. These increased density and temperature drops are the underlying reasons for the decreased robustness of UHPSFC.

3.
J Chromatogr A ; 1621: 461048, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32204879

ABSTRACT

The impact of eluent components added to improve separation performance in supercritical fluid chromatography was systematically, and fundamentally, investigated. The model system comprised basic pharmaceuticals as solutes and eluents containing an amine (i.e., triethylamine, diethylamine, or isopropylamine) as additive with MeOH as the co-solvent. First, an analytical-scale study was performed, systematically investigating the impact of the additives/co-solvent on solute peak shapes and retentions, using a design of experiments approach; here, the total additive concentration in the eluent ranged between 0.021 and 0.105 % (v/v) and the MeOH fraction in the eluent between 16 and 26 % (v/v). The co-solvent fraction was found to be the most efficient tool for adjusting retentions, whereas the additive fraction was the prime tool for improving column efficiency and peak analytical performance. Next, the impacts of the amine additives on the shapes of the so-called overloaded solute elution profiles were investigated. Two principal types of preparative peak deformations appeared and were investigated in depth, analyzed using computer simulation with mechanistic modeling. The first type of deformation was due to the solute eluting too close to the additive perturbation peak, resulting in severe peak deformation caused by co-elution. The second type of deformation was also due to additive-solute interactions, but here the amine additives acted as kosmotropic agents, promoting the multilayer adsorption to the stationary phase of solutes with bulkier aryl groups.


Subject(s)
Chromatography, Supercritical Fluid/methods , Adsorption , Computer Simulation , Diethylamines/chemistry , Ethylamines/chemistry , Propylamines/chemistry , Solvents/chemistry
4.
J Chromatogr A ; 1568: 177-187, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30072233

ABSTRACT

We investigated and compared the robustness of supercritical fluid chromatography (SFC) separations of the peptide gramicidin, using either isocratic or gradient elution. This was done using design of experiments in a design space of co-solvent fraction, water mass fraction in co-solvent, pressure, and temperature. The density of the eluent (CO2-MeOH-H2O) was experimentally determined using a Coriolis mass flow meter to calculate the volumetric flow rate required by the design. For both retention models, the most important factor was the total co-solvent fraction and water mass fraction in co-solvent. Comparing the elution modes, we found that gradient elution was more than three times more robust than isocratic elution. We also observed a relationship between the sensitivity to changes and the gradient steepness and used this to draw general conclusions beyond the studied experimental system. To test the robustness in a practical context, both the isocratic and gradient separations were transferred to another laboratory. The gradient elution was highly reproducible between laboratories, whereas the isocratic system was not. Using measurements of the actual operational conditions (not the set system conditions), the isocratic deviation was quantitatively explained using the retention model. The findings indicate the benefits of using gradient elution in SFC as well as the importance of measuring the actual operational conditions to be able to explain observed differences between laboratories when conducting method transfer.


Subject(s)
Chromatography, Supercritical Fluid/methods , Peptides/isolation & purification , Computer Simulation , Gramicidin/isolation & purification , Pressure , Solvents/chemistry , Temperature , Water
5.
J Chromatogr A ; 1496: 141-149, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28366564

ABSTRACT

Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent.


Subject(s)
Chromatography, Supercritical Fluid/methods , Solvents/chemistry , Adsorption , Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/instrumentation , Methanol/chemistry
6.
J Chromatogr A ; 1468: 200-208, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27641721

ABSTRACT

In supercritical fluid chromatography (SFC) the mobile phase comprises of carbon dioxide (CO2) as main solvent and smaller amounts of an organic polar solvent (often an alcohol) as co-solvent. The co-solvent is considered to function by changing the overall polarity of the eluent, i.e. by acting as a "modifier". However, recent studies indicate that the co-solvent methanol can also adsorb to some common SFC stationary phases. Hence, the co-solvent should also be able to function as an "adsorbing additive", i.e. an eluent component that competes with the injected solutes about the stationary phase surface. In this study it was found by fitting different mechanistic models to systematic experimental data, that the co-solvent methanol can have both functions: at low co-solvent fractions, methanol acts as an additive whereas at larger fractions it acts as a modifier. Moreover, it was found that when the co-solvent adsorbs more strongly to the stationary phase than the solute, "bizarre" deformations of the preparative band shapes can occur. This is illustrated by a solute that converts from a normal "Langmuirian" band shape to an "anti-Langmuirian" shape when changing from neat carbon dioxide (CO2) to an eluent containing co-solvent. This peak shape transition is dependent on both (i) the relative retention of the solute and co-solvent to the stationary phase in eluent containing neat CO2 and on (ii) the relative retention of the additive perturbation peak and the solute peak in eluent containing also co-solvent.


Subject(s)
Chromatography, Supercritical Fluid/methods , Solvents/chemistry , Adsorption , Carbon Dioxide/chemistry , Methanol/chemistry
7.
J Chromatogr A ; 1442: 129-39, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26979267

ABSTRACT

Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region.


Subject(s)
Chromatography, Supercritical Fluid/standards , Methanol/metabolism , Adsorption , Alcohols/chemistry , Carbon Dioxide/chemistry , Methanol/chemistry , Pressure , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...