Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 39(5): 424-426, 2024 May.
Article in English | MEDLINE | ID: mdl-38521739

ABSTRACT

Cold temperatures have been posited as a key driver of polyploidy (possession of multiple chromosome sets). However, high temperatures associated with fire, and the indirect impact of post-fire environments in polypoid formation and establishment deserve more attention for a comprehensive understanding of polyploid ecology, evolution, and current distributions.


Subject(s)
Fires , Polyploidy , Biological Evolution , Cold Temperature
2.
AoB Plants ; 15(4): plad034, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37415722

ABSTRACT

Under the changing climate, the persistence of Afrotemperate taxa may be threatened as suitable habitat availability decreases. The unique disjunct ranges of podocarps in southern Africa raise questions about the persistence of these species under climate change. Here, we identified likely environmental drivers of these distributions, characterized the current and future (2070) environmental niches, and projected distributions of four podocarp species in South Africa. Species distribution models were conducted using species locality data for Afrocarpus falcatus, Podocarpus latifolius, Pseudotropheus elongatus and Podocarpus henkelii and both historical climate data (1970-2000) and future climate scenarios (Representative Concentration Pathway [RCP] 4.5 and 8.5, 2061-2080) to estimate the current and future distributions. We also used this opportunity to identify the most important climatic variables that likely govern each species' distribution. Using niche overlap estimates, a similarity test, and indices of niche expansion, stability and unfilling, we explored how niches change under different climate scenarios. The distribution of the study species was governed by the maximum temperature of the warmest month, temperature annual range, mean temperature of the wettest quarter, and precipitation of the wettest, driest and warmest quarters. The current distribution of A. falcatus was predicted to expand to higher elevations under RCP 4.5 and RCP 8.5. Podocarpus henkelii was predicted to lose most of its suitable habitat under RCP 4.5 and expand under RCP 8.5; however, this was the opposite for P. elongatus and P. latifolius. Interestingly, P. elongatus, which had the smallest geographic distribution, showed the most vulnerability to climate change in comparison to the other podocarps. Mapping the distribution of podocarps and understanding the differences in their current and future climate niches provide insight into potential climate drivers of podocarp persistence and the potential for adaptation of these species. Overall, these results suggest that P. elongatus and P. henkelii may expand to novel environmental niches.

3.
Int J Phytoremediation ; 23(2): 130-138, 2021.
Article in English | MEDLINE | ID: mdl-32755391

ABSTRACT

Heavy metal polluted soils can be remediated using plants, a process called phytoremediation. However, high concentrations of heavy metals can negatively affect plant physiology and growth. We experimentally evaluated the effects of cadmium (Cd) on the growth, (i.e. height, shoot and biomass) and physiology (i.e. leaf chlorophyll and relative water contents) of Tamarix usneoides. In a greenhouse experiment, T. usneoides clones were subjected to a once off treatment of 100 mmol/l NaCl with three different Cd concentrations (6, 12, and 18 mg/kg) applied 3 times/week for eight weeks. We predicted that plant health would decrease with an increase in Cd concentration. Results revealed a 35.9% reduction in chlorophyll content between the 18 mg/kg Cd treated plants and the control, suggesting that T. usneoides experienced a reduction in photosynthetic rate, which in turn influenced the growth and relative water content (RWC) of the plant. Although T. usneoides' growth and physiology were significantly decreased at 12 and 18 mg/kg Cd concentrations, the plants tolerated up to 6 mg/kg Cd concentration, a level found in most anthropogenic Cd-contaminated soils. Tamarix usneoides should thus be confirmed as a good phytoremediation candidate once its ability to extract, translocate and concentrate Cd has been determined.


Subject(s)
Metals, Heavy , Soil Pollutants , Tamaricaceae , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Metals, Heavy/analysis , Plant Roots/chemistry , Salt-Tolerant Plants , Soil , Soil Pollutants/toxicity
4.
Mol Ecol ; 28(17): 4118-4133, 2019 09.
Article in English | MEDLINE | ID: mdl-31232488

ABSTRACT

Plant-pollinator interactions are often highly specialised, which may be a consequence of co-evolution. Yet when plants and pollinators co-evolve, it is not clear if this will also result in frequent cospeciation. Here, we investigate the mutual evolutionary history of South African oil-collecting Rediviva bees and their Diascia host plants, in which the elongated forelegs of female Rediviva have been suggested to coevolve with the oil-producing spurs of their Diascia hosts. After controlling for phylogenetic nonindependence, we found Rediviva foreleg length to be significantly correlated with Diascia spur length, suggestive of co-evolution. However, as trait correlation could also be due to pollinator shifts, we tested if cospeciation or pollinator shifts have dominated the evolution of Rediviva-Diascia interactions by analysing phylogenies in a cophylogenetic framework. Distance-based cophylogenetic analyses (PARAFIT, PACo) indicated significant congruence of the two phylogenies under most conditions. Yet, we found that phylogenetic relatedness was correlated with ecological similarity (the spectrum of partners that each taxon interacted with) only for Diascia but not for Rediviva, suggesting that phylogenetic congruence might be due to phylogenetic tracking by Diascia of Rediviva rather than strict (reciprocal) co-evolution. Furthermore, event-based reconciliation using a parsimony approach (CORE-PA) on average revealed only 11-13 cospeciation events but 58-80 pollinator shifts. Probabilistic cophylogenetic analyses (COALA) supported this trend (8-29 cospeciations vs. 40 pollinator shifts). Our study suggests that diversification of Diascia has been largely driven by Rediviva (phylogenetic tracking, pollinator shifts) but not vice versa. Moreover, our data suggest that, even in co-evolving mutualisms, cospeciation events might occur only infrequently.


Subject(s)
Bees/genetics , Biological Evolution , Genetic Speciation , Host-Parasite Interactions/genetics , Pollination/physiology , Scrophulariaceae/parasitology , Animals , Phylogeny , Quantitative Trait, Heritable
5.
J Anim Ecol ; 88(5): 757-767, 2019 05.
Article in English | MEDLINE | ID: mdl-30828806

ABSTRACT

Foraging modes (ambush vs. active foraging) are often correlated with a suite of morphological, physiological, behavioural and ecological traits known as the "adaptive syndrome" or "syndrome hypothesis." In snakes, an ecological correlate often reported in the literature is that ambush-hunting snakes have a higher relative meal size compared to actively foraging snakes which feed on smaller prey items. This "large meal versus small meal" feeding hypothesis between ambush and active foragers has become a widely accepted paradigm of snake feeding ecology, despite the fact that no rigorous meta-analysis has been conducted to support this generalization. We conducted a phylogenetically explicit meta-analysis, which included ca. 100 species, to test this paradigm of snake feeding ecology. We gathered data on prey size by inducing regurgitation by palpation in free-ranging snakes and by examining the stomach contents of preserved museum specimens. When we found prey, we recorded both snake and prey mass to estimate relative prey mass (prey mass/snake mass). We also reviewed published studies of snake feeding ecology to gather similar information for other species. Ambush and active foragers did not differ in minimum or average meal size but the maximum meal sizes consumed by ambush-foraging snakes were larger than the maximum meal sizes eaten by active foragers. This results in ambush-foraging snakes consuming a significantly wider range of meal sizes, rather than being large meal specialists compared to active foragers. We argue that ambush foragers evolved to be more opportunistic predators because they encounter prey less frequently compared to active foragers. This hypothesis is further supported by the fact that ambush foragers also exhibited marginally wider diet breadths, consuming a broader range of prey types in comparison with active foragers. Our study challenges aspects of the foraging syndrome as it is currently conceived, and our results have important implications for our understanding of how foraging mode has shaped the behaviour and physiology of ambush-foraging snakes.


Subject(s)
Predatory Behavior , Snakes , Animals , Diet , Ecology , Feeding Behavior
6.
Appl Plant Sci ; 4(5)2016 May.
Article in English | MEDLINE | ID: mdl-27213125

ABSTRACT

PREMISE OF THE STUDY: Microsatellites were developed for the widespread Helichrysum odoratissimum (Asteraceae) to estimate gene flow across diploid populations and to test if gene flow occurs among other closely related lineages within this genus. METHODS AND RESULTS: Ten primer pairs were developed and tested using populations across South Africa; however, only seven primer pairs were polymorphic for the target species. The seven polymorphic primers amplified di- and trinucleotide repeats with up to 16 alleles per locus among 125 diploid individuals used for analyses. CONCLUSIONS: These markers can be used to estimate gene flow among populations of known ploidy level of H. odoratissimum to test evolutionary hypotheses. Furthermore, these markers amplify successfully in other Helichrysum species, including the other three taxonomic Group 4 species, and therefore can be used to inform taxonomic work on these species.

7.
Am J Bot ; 100(3): 496-508, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23400493

ABSTRACT

PREMISE OF THE STUDY: Polyploidization is a key factor involved in the diversification of plants. Although polyploids are commonly found, there remains controversy on the mechanisms that lead to their successful establishment. One major problem that has been identified is that newly formed polyploids lack mates of the appropriate ploidy level and may experience severely reduced fertility due to nonproductive intercytotype crosses. Niche differentiation has been proposed as a primary mechanism that can alleviate this reproductive disadvantage and facilitate polyploid establishment. Here we test whether the establishment of tetraploid cytotypes of Heuchera cylindrica (Saxifragaceae) is consistent with climatic niche differentiation. • METHODS: We use a combination of field surveys, flow cytometry and species distribution models to: (1) examine the distribution of diploid and tetraploid cytotypes; and (2) determine whether tetraploid Heuchera cylindrica occupy climates that differ from those of its diploid progenitors. • KEY RESULTS: The geographic distributions of diploid and tetraploid cytotypes are largely allopatric as an extensive survey of 636 plants from 43 locations failed to detect any populations with both cytotypes. Although diploids and tetraploids occur in different geographic areas, polyploid Heuchera cylindrica occur almost exclusively in environments that are predicted to be suitable to diploid populations. • CONCLUSIONS: Climatic niche differentiation does not explain the geographic distribution of tetraploid Heuchera cylindrica. We propose instead that tetraploid lineages were able to establish by taking advantage of glacial retreat and expanding into previously unoccupied sites.


Subject(s)
Climate , Heuchera/genetics , Polyploidy , Area Under Curve , Canada , Geography , Models, Biological , Species Specificity , Tetraploidy , United States
8.
Am J Bot ; 98(2): e28-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21613100

ABSTRACT

PREMISE OF THE STUDY: Microsatellites were developed for the native, perennial herbs Houstonia longifolia and H. purpurea to establish rates and patterns of hybridization among these and other closely related lineages within the genus. METHODS AND RESULTS: Seven primer sets were developed and tested using populations across eastern North America and into parts of the Midwest. Primers amplified di- and tri-nucleotide repeats with 1-16 alleles per locus among diploids. These primers also amplified microsatellites for H. purpurea var. montana, H. purpurea var. calycosa, H. ouachitana, and H. canadensis, and for other Houstonia species outside section Amphiotis. CONCLUSIONS: These results demonstrate the value of microsatellite loci in studies focusing on hybridization and population genetics across Houstonia section Amphiotis and could be useful in studies within other sections of Houstonia as well as in studies of related genera, such as Hedyotis.


Subject(s)
Chimera/genetics , DNA Primers , DNA, Plant , Genetic Loci , Genetic Variation , Microsatellite Repeats , Rubiaceae/genetics , Alleles , Genome, Plant , Hybridization, Genetic , Polyploidy , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...