Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 85(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30877113

ABSTRACT

Some lactic acid bacteria, especially Lactobacillus spp., possess adhesive properties enabling colonization of the human gastrointestinal tract. Two probiotic Lactobacillus plantarum strains, WCSF1 and 299v, display highly different mannose-specific adhesion, with L. plantarum 299v being superior to L. plantarum WCFS1 based on a yeast agglutination assay. A straightforward correlation between the mannose adhesion capacity and domain composition of the mannose-specific adhesin (Msa) in the two strains has not been demonstrated previously. In this study, we analyzed the promoter regions upstream of the msa gene encoding a mannose-specific adhesin in these two strains. The promoter region was mapped by primer extension and DNA sequence analysis, and only a single nucleotide change was identified between the two strains. However, Northern blot analysis showed a stronger msa transcript band in 299v than in WCFS1 correlating with the different adhesion capacities. During the establishment of a high-throughput yeast agglutination assay, we isolated variants of WCFS1 that displayed a very strong mannose-specific adhesion phenotype. The region upstream of the msa gene in these variants showed an inversion of a 104-bp fragment located between two perfectly inverted repeats present in the untranslated leader region. The inversion disrupts a strong hairpin structure that otherwise most likely would terminate the msa transcript. In addition, the ribosome binding site upstream of the msa gene, which is also masked within this hairpin structure, becomes accessible upon inversion, thereby increasing the frequency of translation initiation in the variant strains. Furthermore, Northern blot analysis showed a higher abundance of the msa transcript in the variants than in the wild type, correlating with a strong-Msa phenotype.IMPORTANCE Probiotic strains possess adhesive properties enabling colonization of the human intestinal tract through interactions between molecules present on the probiotic bacteria and components of the epithelial surface. In Lactobacillus plantarum, interaction is mediated through bacterial surface proteins like Msa, which binds to mannose residues present on the intestinal cells. Such interactions are believed to be important for the health-promoting effects of probiotics, including displacement of pathogens, immunomodulation, and protective effects on the intestinal barrier function. In this study, we have identified a new molecular switch controlling expression of the msa gene in L. plantarum strain WCFS1. Strains with increased msa expression could be valuable in the development and manufacture of improved probiotic products.


Subject(s)
Adhesins, Bacterial/genetics , Gene Expression Regulation, Bacterial , Lactobacillus plantarum/genetics , Mannose/metabolism , Probiotics , Adhesins, Bacterial/metabolism , Agglutination , Gastrointestinal Tract/microbiology , Humans , Lactobacillus plantarum/metabolism , Saccharomyces cerevisiae/metabolism
2.
Microbiol Res ; 168(5): 245-53, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23395591

ABSTRACT

An important criterion for the selection of a probiotic bacterial strain is its ability to adhere to the mucosal surface. Adhesion is usually mediated by proteins or other components located on the outer cell surface of the bacterium. In the present study we characterized the adhesive properties of two classical intracellular enzymes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase (ENO) isolated from the outer cell surface of the probiotic bacterium Lactobacillus plantarum 299v. None of the genes encoded signal peptides or cell surface anchoring motifs that could explain their extracellular location on the bacterial surface. The presence of the glycolytic enzymes on the outer surface was verified by western blotting using polyclonal antibodies raised against the specific enzymes. GAPDH and ENO showed a highly specific binding to plasminogen and fibronectin whereas GAPDH but not ENO showed weak binding to mucin. Furthermore, a pH dependent and specific binding of GAPDH and ENO to intestinal epithelial Caco-2 cells at pH 5 but not at pH 7 was demonstrated. The results showed that these glycolytic enzymes could play a role in the adhesion of the probiotic bacterium L. plantarum 299v to the gastrointestinal tract of the host. Finally, a number of probiotic as well non-probiotic Lactobacillus strains were analyzed for the presence of GAPDH and ENO on the outer surface, but no correlation between the extracellular location of these enzymes and the probiotic status of the applied strains was demonstrated.


Subject(s)
Bacterial Adhesion , Epithelial Cells/microbiology , Extracellular Matrix Proteins/metabolism , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/physiology , Phosphopyruvate Hydratase/metabolism , Caco-2 Cells , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Humans , Membrane Proteins/metabolism , Molecular Sequence Data , Protein Binding , Sequence Analysis, DNA
3.
FEMS Microbiol Lett ; 297(1): 61-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19527296

ABSTRACT

In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Gel bands were excised and in-gel digested with trypsin. The resulting peptides were analysed by capillary-LC-ESI-MS/MS. The peptide sequences were used for a database search and allowed identification of a total of 29 proteins, many of which could potentially be involved in the action of probiotics in the gastrointestinal tract. The results provide the basis for future studies on the molecular mechanisms of probiotics.


Subject(s)
Bacterial Proteins/chemistry , Lactobacillus plantarum/chemistry , Membrane Proteins/chemistry , Probiotics/chemistry , Proteomics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Probiotics/metabolism
4.
Microb Cell Fact ; 6: 28, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17711578

ABSTRACT

BACKGROUND: Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis. RESULTS: A synthetic ara h 2 gene was cloned into an L. lactis expression plasmid containing the P170 promoter and the SP310mut2 signal sequence. Flask cultures grown overnight showed secretion of the 17 kDa Ara h 2 protein. A batch fermentation resulted in 40 mg/L recombinant Ara h 2. Purification of Ara h 2 from the culture supernatant was done by hydrophobic exclusion and size separation. Mass spectrometry and N-terminal analysis showed a recombinant Ara h 2 of full length and correctly processed by the signal peptidase. The immunological activity of recombinant Ara h 2 was analysed by ELISA using antibodies specific for native Ara h 2. The recombinant Ara h 2 showed comparable immunereactivity to that of native Ara h 2. CONCLUSION: Recombinant production of Ara h 2 using L. lactis can offer high yields of secreted, full length and immunologically active allergen. The L. lactis expression system can support recombinant allergen material for immunotherapy and component resolved allergen diagnostics.

5.
Genet Vaccines Ther ; 5: 3, 2007 Jan 29.
Article in English | MEDLINE | ID: mdl-17261176

ABSTRACT

For reasons of efficiency Escherichia coli is used today as the microbial factory for production of plasmid DNA vaccines. To avoid hazardous antibiotic resistance genes and endotoxins from plasmid systems used nowadays, we have developed a system based on the food-grade Lactococcus lactis and a plasmid without antibiotic resistance genes. We compared the L. lactis system to a traditional one in E. coli using identical vaccine constructs encoding the gp120 of HIV-1. Transfection studies showed comparable gp120 expression levels using both vector systems. Intramuscular immunization of mice with L. lactis vectors developed comparable gp120 antibody titers as mice receiving E. coli vectors. In contrast, the induction of the cytolytic response was lower using the L. lactis vector. Inclusion of CpG motifs in the plasmids increased T-cell activation more when the E. coli rather than the L. lactis vector was used. This could be due to the different DNA content of the vector backbones. Interestingly, stimulation of splenocytes showed higher adjuvant effect of the L. lactis plasmid. The study suggests the developed L. lactis plasmid system as new alternative DNA vaccine system with improved safety features. The different immune inducing properties using similar gene expression units, but different vector backbones and production hosts give information of the adjuvant role of the silent plasmid backbone. The results also show that correlation between the in vitro adjuvanticity of plasmid DNA and its capacity to induce cellular and humoral immune responses in mice is not straight forward.

6.
Microb Cell Fact ; 5: 23, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16796731

ABSTRACT

The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.

7.
Microb Cell Fact ; 4: 26, 2005 Sep 06.
Article in English | MEDLINE | ID: mdl-16144545

ABSTRACT

In 1990 a new approach for vaccination was invented involving injection of plasmid DNA in vivo, which elicits an immune response to the encoded protein. DNA vaccination can overcome most disadvantages of conventional vaccine strategies and has potential for vaccines of the future. However, today 15 years on, a commercial product still has not reached the market. One possible explanation could be the technique's failure to induce an efficient immune response in humans, but safety may also be a fundamental issue. This review focuses on the safety of the genetic elements of DNA vaccines and on the safety of the microbial host for the production of plasmid DNA. We also propose candidates for the vaccine's genetic elements and for its microbial production host that can heighten the vaccine's safety and facilitate its entry to the market.

8.
Appl Environ Microbiol ; 68(10): 5051-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12324356

ABSTRACT

We report the development of a nonantibiotic and nonpathogenic host-plasmid selection system based on lactococcal genes and threonine complementation. We constructed an auxotrophic Lactococcus lactis MG1363Deltathr strain which carries deletions in two genes encoding threonine biosynthetic enzymes. To achieve plasmid-borne complementation, we then constructed the minimal cloning vector, pJAG5, based on the genes encoding homoserine dehydrogenase-homoserine kinase (the hom-thrB operon) as a selective marker. Using strain MG1363Deltathr, selection and maintenance of cells carrying pJAG5 were obtained in threonine-free defined media. Compared to the commonly used selection system based on erythromycin resistance, the designed complementation system offers a competitive and stable plasmid selection system for the production of heterologous proteins in L. lactis. The potential of pJAG5 to deliver genes for expression in eukaryotes was evaluated by insertion of a mammalian expression unit encoding a modified green fluorescent protein. The successful delivery and expression of genes in human kidney fibroblasts indicated the potential of the designed nonantibiotic host-plasmid system for use in genetic immunization.


Subject(s)
Fibroblasts/physiology , Lactococcus lactis/genetics , Plasmids/genetics , Cell Line , Cloning, Molecular , Gene Expression Regulation, Bacterial , Genetic Vectors/genetics , Green Fluorescent Proteins , Humans , Kidney/cytology , Lactococcus lactis/enzymology , Luminescent Proteins/metabolism , Protein Biosynthesis , Threonine/biosynthesis , Threonine/genetics , Threonine/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...