Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Innov Regul Sci ; 49(5): 632-642, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366330

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is the most common neurobiological disorder in children, with a prevalence of ~6-7%1,2 that has remained stable for decades2. The social and economic burden associated with patients3, families, and broader systems (healthcare/educational) is substantial, with the annual economic impact of ADHD exceed $30 billion in the US alone4. Efficacy of pharmacotherapy in treating ADHD symptoms has generally been considerable with at least ¾ of individuals benefitting from pharmacotherapy, typically in the form of stimulants5. In this review, we begin by briefly reviewing the history of pharmacotherapy in relation to ADHD, before focusing (primarily) on the state-of-the-field on themes such as biophysiology, pharmacokinetics, and pharmacogenomics. We conclude with a summary of emerging clinical and research studies, particularly the potential role for precision therapy in matching ADHD patients and drug types.

2.
Mol Psychiatry ; 19(5): 568-72, 2014 May.
Article in English | MEDLINE | ID: mdl-23689535

ABSTRACT

Copy number variants (CNVs) are risk factors in neurodevelopmental disorders, including autism, epilepsy, intellectual disability (ID) and schizophrenia. Childhood onset schizophrenia (COS), defined as onset before the age of 13 years, is a rare and severe form of the disorder, with more striking array of prepsychotic developmental disorders and abnormalities in brain development. Because of the well-known phenotypic variability associated with pathogenic CNVs, we conducted whole genome genotyping to detect CNVs and then focused on a group of 46 rare CNVs that had well-documented risk for adult onset schizophrenia (AOS), autism, epilepsy and/or ID. We evaluated 126 COS probands, 69 of which also had a healthy full sibling. When COS probands were compared with their matched related controls, significantly more affected individuals carried disease-related CNVs (P=0.017). Moreover, COS probands showed a higher rate than that found in AOS probands (P<0.0001). A total of 15 (11.9%) subjects exhibited at least one such CNV and four of these subjects (26.7%) had two. Five of 15 (4.0% of the sample) had a 2.5-3 Mb deletion mapping to 22q11.2, a rate higher than that reported for adult onset (0.3-1%) (P<0.001) or autism spectrum disorder and, indeed, the highest rate reported for any clinical population to date. For one COS subject, a duplication found at 22q13.3 had previously only been associated with autism, and for four patients CNVs at 8q11.2, 10q22.3, 16p11.2 and 17q21.3 had only previously been associated with ID. Taken together, these findings support the well-known pleiotropic effects of these CNVs suggesting shared abnormalities early in brain development. Clinically, broad CNV-based population screening is needed to assess their overall clinical burden.


Subject(s)
DNA Copy Number Variations , Schizophrenia, Childhood/genetics , Adult , Child , Child Development Disorders, Pervasive/genetics , Female , Genetic Pleiotropy , Genotyping Techniques , Humans , Male , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Sequence Deletion , Siblings
3.
Int J Obes (Lond) ; 36(1): 80-3, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22005716

ABSTRACT

Mitochondrial electron transport has a central role in regulating energy supply within a cell. We hypothesized that mitochondrial variants or increased levels of mitochondrial heteroplasmy could be associated with common childhood obesity through their effects on mitochondrial function. To investigate this question, we queried two genome-wide genotyped childhood obesity datasets, consisting of 1080 European-American (EA) obese children (defined as BMI ≥ 95th percentile) together with 2500 EA lean controls (defined as BMI<50th percentile) and 1479 African-American (AA) obese children and 1575 AA lean controls. Association was not observed between childhood obesity and any of the assayed mitochondrial polymorphisms in either ethnicity. We also found no observable differences in heteroplasmy between each obese and non-obese group. Finally, we analyzed the quantitative mitochondrial genotype cells generated, whether they exceeded the heteroplasmy threshold or not. With this more lenient test, we found six positions with a significant difference between EA cases and controls (P<1 × 10(-4)). However, when evaluating the AA data set, no differences were noted at these sites, suggesting that our initial observations were because of chance rather than a meaningful relationship to childhood obesity. As such, it is unlikely that common mitochondrial polymorphisms or heteroplasmy have a role in childhood obesity.


Subject(s)
Black or African American/genetics , DNA, Mitochondrial/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , White People/genetics , Body Mass Index , Child , Female , Genome-Wide Association Study , Genotype , Humans , Male , Obesity/epidemiology , Obesity/ethnology , Sequence Alignment , Sequence Analysis, DNA
4.
Mol Psychiatry ; 15(6): 637-46, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19546859

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Central Nervous System/growth & development , DNA Copy Number Variations/genetics , Adolescent , Adult , Child , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide , Receptor, Metabotropic Glutamate 5 , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptors, Metabotropic Glutamate/genetics , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...