Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(2): 023202, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706390

ABSTRACT

Circular Rydberg states are excellent tools for quantum technologies, with large mutual interactions and long lifetimes in the tens of milliseconds range, 2 orders of magnitude larger than those of laser-accessible Rydberg states. However, such lifetimes are observed only at zero temperature. At room temperature, blackbody-radiation-induced transfers cancel this essential asset of circular states, which have thus been used mostly so far in specific, complex cryogenic experiments. We demonstrate here, on a laser-cooled atomic sample, a circular state lifetime of more than 1 millisecond at room temperature for a principal quantum number 60. A simple plane-parallel capacitor efficiently inhibits the blackbody-radiation-induced transfers. One of the capacitor electrodes is fully transparent and provides large optical access to the atoms. This result paves the way to a wide range of quantum metrology and quantum simulation room-temperature experiments with long-lived, trapped circular Rydberg atoms in inhibition capacitors with full optical access.

2.
Phys Rev Lett ; 125(26): 263001, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33449789

ABSTRACT

Alkaline earth Rydberg atoms are very promising tools for quantum technologies. Their highly excited outer electron provides them with the remarkable properties of Rydberg atoms and, notably, with a huge coupling to external fields or to other Rydberg atoms while the ionic core retains an optically active electron. However, low angular-momentum Rydberg states suffer almost immediate autoionization when the core is excited. Here, we demonstrate that strontium circular Rydberg atoms with a core excited in a 4D metastable level are impervious to autoionization over more than a few millisecond time scale. This makes it possible to trap and laser-cool Rydberg atoms. Moreover, we observe singlet to triplet transitions due to the core optical manipulations, opening the way to a microwave to optical quantum interface.

3.
Phys Rev Lett ; 123(14): 143605, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702170

ABSTRACT

The simple resonant Rabi oscillation of a two-level system in a single-mode coherent field reveals complex features at the mesoscopic scale, with oscillation collapses and revivals. Using slow circular Rydberg atoms interacting with a superconducting microwave cavity, we explore this phenomenon in an unprecedented range of interaction times and photon numbers. We demonstrate the efficient production of cat states, which are the quantum superposition of coherent components with nearly opposite phases and sizes in the range of few tens of photons. We measure cuts of their Wigner functions revealing their quantum coherence and observe their fast decoherence. This experiment opens promising perspectives for the rapid generation and manipulation of nonclassical states in cavity and circuit quantum electrodynamics.

4.
Phys Rev Lett ; 118(25): 253603, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28696734

ABSTRACT

We realize a coherent transfer between a laser-accessible low-angular-momentum Rydberg state and the circular Rydberg level with maximal angular momentum. It is induced by a radio frequency field with a high-purity σ^{+} polarization resonant on Stark transitions inside the hydrogenic Rydberg manifold. We observe over a few microseconds more than 20 coherent Rabi oscillations between the initial Rydberg state and the circular level. We characterize these many-Rydberg-level oscillations and find them in perfect agreement with a simple model. This coherent transfer opens the way to hybrid quantum gates bridging the gap between optical communication and quantum information manipulations with microwave cavity and circuit quantum electrodynamics.

5.
Phys Rev Lett ; 115(1): 013001, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26182093

ABSTRACT

We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

6.
Phys Rev Lett ; 108(24): 243602, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004271

ABSTRACT

Fock states with photon numbers n up to 7 are prepared on demand in a microwave superconducting cavity by a quantum feedback procedure that reverses decoherence-induced quantum jumps. Circular Rydberg atoms are used as quantum nondemolition sensors or as single-photon emitter or absorber actuators. The quantum nature of these actuators matches the correction of single-photon quantum jumps due to relaxation. The flexibility of this method is suited to the generation of arbitrary sequences of Fock states.

7.
Phys Rev Lett ; 105(21): 213601, 2010 Nov 19.
Article in English | MEDLINE | ID: mdl-21231304

ABSTRACT

We discuss an implementation of quantum Zeno dynamics in a cavity quantum electrodynamics experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict the field evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising methods for tailoring nonclassical states. We propose to realize "tweezers" picking a coherent field at a point in phase space and moving it towards an arbitrary final position without affecting other nonoverlapping coherent components. These effects could be observed with a state-of-the-art apparatus.

8.
Phys Rev Lett ; 101(24): 240402, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113603

ABSTRACT

The relaxation of a quantum field stored in a high-Q superconducting cavity is monitored by nonresonant Rydberg atoms. The field, subjected to repetitive quantum nondemolition photon counting, undergoes jumps between photon number states. We select ensembles of field realizations evolving from a given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize in this way a tomography of the photon number relaxation process yielding all the jump rates between Fock states. The damping rates of the n photon states (0 < or = n < or = 7) are found to increase linearly with n. The results are in excellent agreement with theory including a small thermal contribution.

9.
Phys Rev Lett ; 94(11): 113601, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15903855

ABSTRACT

We present an efficient, state-selective, nondemolition atom-counting procedure based on the dispersive interaction of a sample of circular Rydberg atoms with a mesoscopic field contained in a high-quality superconducting cavity. The state-dependent atomic index of refraction, proportional to the atom number, shifts the classical field phase. A homodyne procedure translates the information from the phase to the intensity. The final field intensity is readout by a mesoscopic atomic sample. This method opens promising routes for quantum information processing and nonclassical state generation with Rydberg atoms.

10.
Phys Rev Lett ; 94(1): 010401, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698050

ABSTRACT

Using an echo technique proposed by Morigi et al., we have time-reversed the atom-field interaction in a cavity quantum electrodynamics experiment. The collapse of the atomic Rabi oscillation in a coherent field is reversed, resulting in an induced revival signal. The amplitude of this "echo" is sensitive to nonunitary decoherence processes. Its observation demonstrates the existence of a mesoscopic quantum superposition of field states in the cavity between the collapse and the revival times.

11.
Phys Rev Lett ; 91(23): 230405, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14683167

ABSTRACT

We observe that a mesoscopic field made of several tens of microwave photons exhibits quantum features when interacting with a single Rydberg atom in a high-Q cavity. The field is split into two components whose phases differ by an angle inversely proportional to the square root of the average photon number. The field and the atomic dipole are phase entangled. These manifestations of photon graininess vanish at the classical limit. This experiment opens the way to studies of large quantum state superpositions at the quantum-classical boundary.

SELECTION OF CITATIONS
SEARCH DETAIL
...