Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Microbiol ; 16(1): 2322241, 2024.
Article in English | MEDLINE | ID: mdl-38440286

ABSTRACT

Objectives: To analyze contributions to microbial ecology of Reactive Electrophile Species (RES), including methylglyoxal, generated during glycolysis. Methods: Genetic analyses were performed on the glyoxalase pathway in Streptococcus mutans (SM) and Streptococcus sanguinis (SS), followed by phenotypic assays and transcription analysis. Results: Deleting glyoxalase I (lguL) reduced RES tolerance to a far greater extent in SM than in SS, decreasing the competitiveness of SM against SS. Although SM displays a greater RES tolerance than SS, lguL-null mutants of either species showed similar tolerance; a finding consistent with the ability of methylglyoxal to induce the expression of lguL in SM, but not in SS. A novel paralogue of lguL (named gloA2) was identified in most streptococci. SM mutant ∆gloA2SM showed little change in methylglyoxal tolerance yet a significant growth defect and increased autolysis on fructose, a phenotype reversed by the addition of glutathione, or by the deletion of a fructose: phosphotransferase system (PTS) that generates fructose-1-phosphate (F-1-P). Conclusions: Fructose contributes to RES generation in a PTS-specific manner, and GloA2 may be required to degrade certain RES derived from F-1-P. This study reveals the critical roles of RES in fitness and interbacterial competition and the effects of PTS in modulating RES metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...