Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(13): 133601, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613290

ABSTRACT

We report experimental measurements of the second-order coherence function g^{(2)}(τ) of the light emitted by a laser-driven dense ensemble of ^{87}Rb atoms. We observe a clear departure from the Siegert relation valid for Gaussian chaotic light. Measuring intensity and first-order coherence, we conclude that the violation is not due to the emergence of a coherent field. This indicates that the light obeys non-Gaussian statistics, stemming from non-Gaussian correlations in the atomic medium. More specifically, the steady state of this driven-dissipative many-body system sustains high-order correlations in the absence of first-order coherence. These findings call for new theoretical and experimental explorations to uncover their origin, and they open new perspectives for the realization of non-Gaussian states of light.

2.
Opt Express ; 32(4): 6204-6214, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439329

ABSTRACT

We report laser frequency stabilization by the combination of modulation transfer spectroscopy and balanced detection of a relatively weak hyperfine transition of the R(158)25-0 line of molecular iodine (127I2), which is used as a new frequency reference for laser trapping and cooling of 174Yb on the 1S0 - 3P1 transition. The atomic cloud is characterized by time-of-flight measurements, and an on-resonance optical depth of up to 47 is obtained. We show laser noise reduction and characterize the short-term laser frequency instability by the Allan deviation of the laser fractional frequency. The minimum measured value is 3.9 ×10-13 at 0.17 s of averaging time.

3.
Opt Lett ; 47(6): 1541-1544, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290359

ABSTRACT

We report a time-resolved study of collective emission in dense ensembles of two-level atoms. We compare, on the same sample, the buildup of superradiance and subradiance from the ensemble when driven by a strong laser. This allows us to measure the dynamics of the population of superradiant and subradiant states as a function of time. In particular, we demonstrate the buildup in time of subradiant states through superradiant dynamics. This illustrates the dynamics of the many-body density matrix of superradiant ensembles of two-level atoms when departing from the ideal conditions of Dicke superradiance, in which symmetry forbids the population of subradiant states.

4.
Phys Rev Lett ; 124(25): 253602, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639788

ABSTRACT

We experimentally study resonant light scattering by a one-dimensional randomly filled chain of cold two-level atoms. By a local measurement of the light scattered along the chain, we observe constructive interferences in light-induced dipole-dipole interactions between the atoms. They lead to a shift of the collective resonance despite the average interatomic distance being larger than the wavelength of the light. This result demonstrates that strong collective effects can be enhanced by structuring the geometrical arrangement of the ensemble. We also explore the high intensity regime where atoms cannot be described classically. We compare our measurement to a mean-field, nonlinear coupled-dipole model accounting for the saturation of the response of a single atom.

SELECTION OF CITATIONS
SEARCH DETAIL
...