Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 9(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906399

ABSTRACT

: Obesity is a risk factor for vascular dysfunction and insulin resistance. The study aim was to demonstrate that adipocyte-specific HO-1 (heme oxygenase-1) gene therapy is a therapeutic approach for preventing the development of obesity-induced metabolic disease in an obese-mice model. Specific expression of HO-1 in adipose tissue was achieved by using a lentiviral vector expressing HO-1 under the control of the adiponectin vector (Lnv-adipo-HO-1). Mice fed a high-fat diet (HFD) developed adipocyte hypertrophy, fibrosis, decreased mitochondrial respiration, increased levels of inflammatory adipokines, insulin resistance, vascular dysfunction, and impaired heart mitochondrial signaling. These detrimental effects were prevented by the selective expression of HO-1 in adipocytes. Lnv-adipo-HO-1-transfected mice on a HFD display increased cellular respiration, increased oxygen consumption, increased mitochondrial function, and decreased adipocyte size. Moreover, RNA arrays confirmed that targeting adipocytes with HO-1 overrides the genetic susceptibility of adiposopathy and correlated with restoration of the expression of anti-inflammatory, thermogenic, and mitochondrial genes. Our data demonstrate that HO-1 gene therapy improved adipose tissue function and had positive impact on distal organs, suggesting that specific targeting of HO-1 gene therapy is an attractive therapeutic approach for improving insulin sensitivity, metabolic activity, and vascular function in obesity.

2.
Obesity (Silver Spring) ; 27(10): 1634-1643, 2019 10.
Article in English | MEDLINE | ID: mdl-31441604

ABSTRACT

OBJECTIVE: This study investigated whether levels of signaling pathways and inflammatory adipokines in epicardial fat regulate cardiovascular risks in humans and mice. METHODS: Epicardial fat was obtained from the hearts of patients with heart failure requiring coronary artery bypass surgery, and signaling pathways were compared with visceral fat. The genetic profile of epicardial and visceral fat from humans was also compared with genetic profiles of epicardial and visceral fat in obese mice. Left ventricular (LV) fractional shortening was measured in obese mice before and after treatment with inducers of mitochondrial signaling heme oxygenase 1 (HO-1)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). An RNA array/heat map on 88 genes that regulate adipose tissue function was used to identify a target gene network. RESULTS: Human epicardial fat gene profiling showed decreased levels of mitochondrial signaling of HO-1-PGC1α and increased levels of the inflammatory adipokine CCN family member 3. Similar observations were seen in epicardial and visceral fat of obese mice. Improvement in LV function was linked to the increase in mitochondrial signaling in epicardial fat of obese mice. CONCLUSIONS: There is a link between cardiac ectopic fat deposition and cardiac function in humans that is similar to that which is described in obese mice. An increase of mitochondrial signaling pathway gene expression in epicardial fat attenuates cardiometabolic dysfunction and LV fractional shortening in obese mice.


Subject(s)
Adipose Tissue/metabolism , Cardiovascular Diseases/genetics , Cytoprotection/genetics , Heme Oxygenase-1/genetics , Myocardium/metabolism , Pericardium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Aged , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Female , Heme Oxygenase-1/metabolism , Humans , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Middle Aged , Myocardium/pathology , Obesity/complications , Obesity/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Risk Factors , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...