Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 365: 109054, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37544500

ABSTRACT

Previous work showed that Gal-1A and Gal-8, two proteins belonging to the galactoside-binding galectin family, are the earliest determinants of the patterning of the skeletal elements of embryonic chicken limbs, and further, that their experimentally determined interactions in the embryonic limb bud can be interpreted via a reaction-diffusion-adhesion (2GL: two galectin plus ligands) model. Here, we use an ordinary differential equation-based approach to analyze the intrinsic switching modality of the 2GL network and characterize the network behavior independent of the diffusive and adhesive arms of the patterning mechanism. We identify two states: where the concentrations of both the galectins are respectively, negligible, and very high. This bistable switch-like system arises via a saddle-node bifurcation from a monostable state. For the case of mass-action production terms, we provide an explicit Lyapunov function for the system, which shows that it has no periodic solutions. Our model therefore predicts that the galectin network may exist in low expression and high expression states separated in space or time, without any intermediate states. We test these predictions in experiments performed with high density cultures of chick limb mesenchymal cells and observe that cells inside precartilage protocondensations express Gal-1A at a much higher rate than those outside, for which it was negligible. The Gal-1A and -8-based patterning network is therefore sufficient to partition the mesenchymal cell population into two discrete cell states with different developmental (chondrogenic vs. non-chondrogenic) fates. When incorporated into an adhesion and diffusion-enabled framework this system can generate a spatially patterned limb skeleton.

2.
J Theor Biol ; 346: 86-108, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24355216

ABSTRACT

We present a mathematical model for the morphogenesis and patterning of the mesenchymal condensations that serve as primordia of the avian limb skeleton. The model is based on the experimentally established dynamics of a multiscale regulatory network consisting of two glycan-binding proteins expressed early in limb development: CG (chicken galectin)-1A, CG-8 and their counterreceptors that determine the formation, size, number and spacing of the "protocondensations" that give rise to the condensations and subsequently the cartilaginous elements that serve as the templates of the bones. The model, a system of partial differential and integro-differential equations containing a flux term to represent local adhesion gradients, is simulated in a "full" and a "reduced" form to confirm that the system has pattern-forming capabilities and to explore the nature of the patterning instability. The full model recapitulates qualitatively and quantitatively the experimental results of network perturbation and leads to new predictions, which are verified by further experimentation. The reduced model is used to demonstrate that the patterning process is inherently morphodynamic, with cell motility being intrinsic to it. Furthermore, subtle relationships between cell movement and the positive and negative interactions between the morphogens produce regular patterns without the requirement for activators and inhibitors with widely separated diffusion coefficients. The described mechanism thus represents an extension of the category of activator-inhibitor processes capable of generating biological patterns with repetitive elements beyond the morphostatic mechanisms of the Turing/Gierer-Meinhardt type.


Subject(s)
Body Patterning , Bone and Bones/embryology , Extremities/embryology , Galectins/metabolism , Models, Biological , Animals , Cell Adhesion , Cell Count , Chickens , Chondrogenesis , Computer Simulation , Numerical Analysis, Computer-Assisted , Reproducibility of Results , Time Factors
3.
Birth Defects Res C Embryo Today ; 96(2): 176-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22692890

ABSTRACT

The production of cartilage (chondrogenic patterning) in the limb is one of the best-studied examples of the emergence of form in developmental biology. At the core of the theoretical study is an effort to understand the mechanism that establishes the characteristic distribution of cartilage in the embryonic limb, which defines the future sites and shapes of bones that will be present in the mature limb. This review article gives an overview of the history and current state of a rich literature of mathematical and computational models that seek to contribute to this problem. We describe models for the mechanisms of limb growth and shaping via interaction with various chemical fields, as well as models addressing the intrinsic self-organization capabilities of the embryonic mesenchymal tissue, such as reaction-diffusion and mechanochemical models. We discuss the contributions of these models to the current understanding of chondrogenesis in vertebrate limbs, as well as their relation to the varied conceptual models that have been proposed by experimentalists.


Subject(s)
Chondrogenesis/physiology , Computer Simulation , Extremities/embryology , Models, Biological , Vertebrates/embryology , Animals , Humans , Mice
4.
J R Soc Interface ; 2(3): 237-53, 2005 Jun 22.
Article in English | MEDLINE | ID: mdl-16849182

ABSTRACT

In this paper we present the foundation of a unified, object-oriented, three-dimensional biomodelling environment, which allows us to integrate multiple submodels at scales from subcellular to those of tissues and organs. Our current implementation combines a modified discrete model from statistical mechanics, the Cellular Potts Model, with a continuum reaction-diffusion model and a state automaton with well-defined conditions for cell differentiation transitions to model genetic regulation. This environment allows us to rapidly and compactly create computational models of a class of complex-developmental phenomena. To illustrate model development, we simulate a simplified version of the formation of the skeletal pattern in a growing embryonic vertebrate limb.


Subject(s)
Models, Biological , Morphogenesis/physiology , Animals , Cattle , Cell Death , Cell Division , Cell Physiological Phenomena , Physiology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...