Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 114(10): 3431-42, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20148542

ABSTRACT

A series of four new trans-diphosphine Pt(II) diacetylide complexes, with a thiophene and two benzenoid rings in each acetylide ligand, have been synthesized and characterized with respect to optical absorption, spectrally and time-resolved luminescence, and optically nonlinear properties such as two-photon absorption cross section and optical power limiting. Density functional theory (DFT) calculations of a few ground state conformations of three Pt(II) diacetylide structures showed similar total energy for each geometry-optimized rotamer but some differences in the vertical excitation energies and in the ligand-to-metal charge-transfer character. The wavelengths of the calculated excitations were found to be red-shifted compared with peaks in the optical absorption spectra, but the general trends and shifts of wavelengths between the different structures are well reproduced. Static emission spectra for degassed samples in THF solution of the larger compounds showed small Stokes shifts and low fluorescence quantum yields, indicating fast intersystem crossing to the triplet manifold. More pronounced differences between the compounds were displayed in the phosphorescence data, in terms of spectral emission wavelengths and decay times. For instance, the phosphorescence decay of the compound with the thiophene ring close to the Pt center was found to be significantly faster than for the other compounds. A possible relationship between triplet lifetime and conformation of the compounds is discussed. It was also demonstrated that the quenching of the excited triplet states in air-saturated samples involves energy transfer to the oxygen triplet state, and subsequent generation of singlet oxygen showing the typical emission at approximately 1275 nm. The amount of produced singlet oxygen followed the phosphorescence yields of the solute molecules. Two-photon absorption cross sections (sigma(2)) were measured and showed values on the order of 10 GM at 780 nm for all compounds. Optical power limiting measurements of the new complexes in THF using 5 ns pulses, showed only slightly better performance at the wavelength of 532 nm compared to that of similar platinum compounds with only two aryl rings in each ligand. At 600 nm the complexes with three aryl rings were significantly better optical limiters than the smaller compounds with two aryl rings in the ligands.

2.
J Phys Chem A ; 113(42): 11242-9, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19827853

ABSTRACT

Photophysical properties of platinum(II) acetylides in tetrahydrofuran (THF) solutions and incorporated in poly(methyl methacrylate) (PMMA) glasses have been studied over a large concentration range from 10 microM to 50 mM. In general, the luminescence properties of the studied chromophores in the liquid state were also maintained in the solid state, except for shorter decay times of 50-90 micros of the triplet state in the glass compared with 200-300 mus in solution at low concentrations. The phosphorescence line shapes were found to be independent of both the chromophore concentration and the environment (THF and PMMA). The triplet state lifetimes did not change with concentration in the solid-state case, whereas, in solution, the decay becomes shorter at increasing concentration. The latter effect could be modeled with an additional linear quenching rate, k(q), in the range of (1 to 7) x 10(7) M(-1) s(-1). Excitation spectra of the triplet state at high concentrations, in both solutions and solid glasses, showed additional excitation bands on the long wavelength side compared with the corresponding measurements at low concentrations. This indicates enhanced singlet-triplet coupling due to intermolecular electronic interactions that become important at concentrations of 0.1 to 1 mM and above.

3.
ACS Chem Biol ; 4(8): 673-84, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19624097

ABSTRACT

Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Abeta-assemblies during in vitro fibrillation of Abeta peptides. In brain tissue samples, Abeta deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8). In addition, a patchy islet-like staining of individual Abeta plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA. The major hallmarks of Alzheimer's disease, namely, Abeta aggregates versus NFTs, could also be distinguished because of distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Abeta-tau interactions, and pathogenesis both ex vivo and in vivo.


Subject(s)
Acetates/analysis , Amyloid beta-Peptides/analysis , Amyloidosis/metabolism , Brain Diseases/metabolism , Neurodegenerative Diseases/metabolism , Thiophenes/analysis , Acetates/chemistry , Acetates/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Amyloidosis/pathology , Animals , Brain Diseases/pathology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Molecular Structure , Neurodegenerative Diseases/pathology , Thiophenes/chemistry , Thiophenes/metabolism
4.
J Phys Chem A ; 113(14): 3311-20, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19292436

ABSTRACT

The photophysical properties of a series of platinum(II) acetylide compounds (trans-Pt(PBu(3))(2)(C[triple bond]C-R)(2)) with the R group consisting of two or three aryl rings (phenyl, phenyl/thiophenyl, phenyl/triazolyl) linked together with ethynyl groups were systematically investigated. Four new structurally similar compounds are reported with: (i) a bithiophene unit in the ligands, (ii) methyl or (iii) methoxy substituents on the aryl ring ligands that promote a more twisted conformation along the long axis of the molecule, and (iv) with two different alkynylaryl ligands giving rise to an asymmetric substitution with respect to the photoactive metal ion center. The spectroscopic studies include optical absorption, spectrally and time-resolved luminescence, as well as transient absorption spectra. The ground-state UV absorption between 300 and 420 nm gave rise to fluorescence with quantum efficiencies in the range of 0.1-1% and efficient intersystem crossing to triplet states. Phosphorescence decay times were in the order of 10-500 micros in oxygen-evacuated samples. The triplet states also lead to strong broadband triplet-triplet absorption between 400 and 800 nm. The complex with asymmetric substitution was found to populate two triplet states of different structure and energy.

5.
J Phys Chem A ; 111(9): 1598-609, 2007 Mar 08.
Article in English | MEDLINE | ID: mdl-17290976

ABSTRACT

Optical power limiting and luminescence properties of two Pt(II) complexes with thiophenyl and phenyl groups in the ligands, trans-Pt(P(n-Bu)3)2(C[triple bond]C-Ar)2, where Ar = -C4H2S-C[triple bond]C-p-C6H4-n-C5H11 (1) and -p-C6H4-C[triple bond]C-C4H3S (2), have been investigated. The fluorescence lifetimes were found to be on the sub-nanosecond time scale, and the quantum yields were low, in accord with fast intersystem crossing from the excited singlet to triplet manifold. The phosphorescence lifetimes of 1 and 2 were shorter than that of a Pt(II) complex having two phenyl groups in the ligands. In order to elucidate the C-Pt bonding nature in the ground state, the 13C NMR chemical shift of the carbon directly bonded to Pt, the coupling constants 1JPtC, 2JPtC, and 1JPtP, and IR nuC[triple bond]C wavenumbers were obtained for 1, 2, and three other trans-diarylalkynyl Pt(II) complexes. X-ray diffraction data of 1 and 2 and density functional theory calculated geometries of models of 1, 2, and trans-Pt(P(n-Bu)3)2(C[triple bond]C-p-C6H4-C[triple bond]C-C6H5)2 (3) show that 1 preferably exists in a different conformation from that of 2 and 3. The variations in photophysical, NMR, and IR data can be rationalized by differences in geometry and pi-backbonding from Pt to the alkynyl ligand.

6.
J Phys Chem A ; 111(2): 244-50, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17214460

ABSTRACT

The photophysical characterization of two new compounds related to bis((4-(phenylethynyl)phenyl)ethynyl)bis(tributylphosphine)platinum(II), here abbreviated Pt1, is reported. For the first new compound ATP1, the inner phenyl rings (closer to the Pt atom) in Pt1 are replaced by thiophene rings bridging at the 2,5-positions. In compound ATP2, the outer phenyl groups are replaced by thiophene rings bonded at the 2-position. Specifically, we report on the fluorescence quantum yield, two-photon absorption, triplet decay times and two-photon absorption induced emission spectra of the molecules in THF solutions. The results were compared with those of Pt1 and Pt1 capped with an acetonide-protected 2,2-bis(methylol)propionic acid (bis-MPA) ester group (Pt1-G1). The photophysical properties of the organic dye 7-(diethylamino)coumarin (Coumarin 110) were determined and used as a reference material. The two-photon absorption cross section around 720-740 nm of ATP1 and ATP2 was found to be of the same order of magnitude as for Pt1-G1, i.e., between 5 and 10 GM, but slightly larger for ATP1 than for ATP2 (1 GM = 1 Göppert-Mayer = 10(-50) (cm(4) s)/photon). The fluorescence decay time of all compounds was found to be very short (subnanosecond) with quantum yields 0.0045, 0.0007, 0.0011 and 0.0020 for ATP1, ATP2, Pt1-G1 and Pt1, respectively, measured at excitation wavelength 373 nm. Just as Pt1 and Pt1-G1, both thiophenyl derivatives showed large intersystem crossing capabilities and phosphorescence, characteristic for a triplet state that can enhance the nonlinear absorption and optical power limiting by triplet state absorption. The phosphorescence emission of the thiophenyl derivatives was red-shifted in comparison with Pt1 and Pt1-G1, and the phosphorescence decay times were on the order of 200-500 ns, as for the Pt1 compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...