Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 57, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30610187

ABSTRACT

Integrated analyses of regulated effector genes, cellular processes, and extrinsic signals are required to understand how transcriptional networks coordinate fate specification and cell behavior during embryogenesis. Ciona cardiopharyngeal progenitors, the trunk ventral cells (TVCs), polarize as leader and trailer cells that migrate between the ventral epidermis and trunk endoderm. We show that the TVC-specific collagen-binding Discoidin-domain receptor (Ddr) cooperates with Integrin-ß1 to promote cell-matrix adhesion. We find that endodermal cells secrete a collagen, Col9-a1, that is deposited in the basal epidermal matrix and promotes Ddr activation at the ventral membrane of migrating TVCs. A functional antagonism between Ddr/Intß1-mediated cell-matrix adhesion and Vegfr signaling appears to modulate the position of cardiopharyngeal progenitors between the endoderm and epidermis. We show that Ddr promotes leader-trailer-polarized BMP-Smad signaling independently of its role in cell-matrix adhesion. We propose that dual functions of Ddr integrate transcriptional inputs to coordinate subcellular processes underlying collective polarity and migration.


Subject(s)
Cell Movement , Cell Polarity , Ciona/cytology , Discoidin Domain Receptors/physiology , Animals , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/physiology , Cell Differentiation , Cell Lineage , Cell-Matrix Junctions , Collagen/metabolism , Discoidin Domain Receptors/metabolism , Embryonic Development , Integrin beta1/metabolism , Signal Transduction , Smad Proteins/metabolism , Smad Proteins/physiology
2.
Dev Biol ; 444 Suppl 1: S219-S236, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29753626

ABSTRACT

How does form arise during development and change during evolution? How does form relate to function, and what enables embryonic structures to presage their later use in adults? To address these questions, we leverage the distinct functional morphology of the jaw in duck, chick, and quail. In connection with their specialized mode of feeding, duck develop a secondary cartilage at the tendon insertion of their jaw adductor muscle on the mandible. An equivalent cartilage is absent in chick and quail. We hypothesize that species-specific jaw architecture and mechanical forces promote secondary cartilage in duck through the differential regulation of FGF and TGFß signaling. First, we perform transplants between chick and duck embryos and demonstrate that the ability of neural crest mesenchyme (NCM) to direct the species-specific insertion of muscle and the formation of secondary cartilage depends upon the amount and spatial distribution of NCM-derived connective tissues. Second, we quantify motility and build finite element models of the jaw complex in duck and quail, which reveals a link between species-specific jaw architecture and the predicted mechanical force environment. Third, we investigate the extent to which mechanical load mediates FGF and TGFß signaling in the duck jaw adductor insertion, and discover that both pathways are mechano-responsive and required for secondary cartilage formation. Additionally, we find that FGF and TGFß signaling can also induce secondary cartilage in the absence of mechanical force or in the adductor insertion of quail embryos. Thus, our results provide novel insights on molecular, cellular, and biomechanical mechanisms that couple musculoskeletal form and function during development and evolution.


Subject(s)
Fibroblast Growth Factors/metabolism , Jaw/embryology , Transforming Growth Factor beta/metabolism , Animals , Biological Evolution , Cartilage/metabolism , Cell Movement , Chick Embryo , Chondrogenesis , Ducks/embryology , Embryo, Nonmammalian/metabolism , Fibroblast Growth Factors/physiology , Gene Expression Regulation, Developmental/genetics , Jaw/physiology , Mandible/embryology , Mesoderm/embryology , Neural Crest/embryology , Neural Crest/physiology , Quail/embryology , Signal Transduction/physiology , Species Specificity , Transforming Growth Factor beta/physiology
3.
Dev Biol ; 353(1): 120-33, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21295566

ABSTRACT

The super-phylum Lophotrochozoa contains the plurality of extant animal phyla and exhibits a corresponding diversity of adult body plans. Moreover, in contrast to Ecdysozoa and Deuterostomia, most lophotrochozoans exhibit a conserved pattern of stereotyped early divisions called spiral cleavage. In particular, bilateral mesoderm in most lophotrochozoan species arises from the progeny of micromere 4d, which is assumed to be homologous with a similar cell in the embryo of the ancestral lophotrochozoan, more than 650 million years ago. Thus, distinguishing the conserved and diversified features of cell fates in the 4d lineage among modern spiralians is required to understand how lophotrochozoan diversity has evolved by changes in developmental processes. Here we analyze cell fates for the early progeny of the bilateral daughters (M teloblasts) of micromere 4d in the leech Helobdella sp. Austin, a clitellate annelid. We show that the first six progeny of the M teloblasts (em1-em6) contribute five different sets of progeny to non-segmental mesoderm, mainly in the head and in the lining of the digestive tract. The latter feature, associated with cells em1 and em2 in Helobdella, is seen with the M teloblast lineage in a second clitellate species, the sludgeworm Tubifex tubifex and, on the basis of previously published work, in the initial progeny of the M teloblast homologs in molluscan species, suggesting that it may be an ancestral feature of lophotrochozoan development.


Subject(s)
Cell Lineage , Leeches/embryology , Oligochaeta/embryology , Animals , Ectoderm/embryology , Leeches/cytology , Mesoderm/embryology , Oligochaeta/cytology
4.
Dev Dyn ; 238(12): 3139-51, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19924812

ABSTRACT

Knowing the normal patterns of embryonic cell proliferation, migration, and differentiation is a cornerstone for understanding development. Yet for most species, the precision with which embryonic cell lineages can be determined is limited by technical considerations (the large numbers of cells, extended developmental times, opacity of the embryos), and these are exacerbated by the inherent variability of the lineages themselves. Here, we present an improved method of cell lineage tracing in the leech Helobdella, driving the expression of a nuclearly localized histone H2B:GFP (green fluorescent protein) fusion protein in selected lineages by microinjection of a plasmid vector. This construct generates a long lasting and minimally mosaic signal with single cell resolution, and does not disrupt the development of most lineages tested. We have validated this technique by elucidating details of cell lineages contributing to segmental and prostomial tissues that could not be observed with standard dextran lineage tracers.


Subject(s)
Cell Lineage , Leeches/embryology , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Cell Division/physiology , Cell Lineage/genetics , Cell Lineage/physiology , Embryo, Nonmammalian , Embryonic Development/genetics , Embryonic Development/physiology , Fluorescent Antibody Technique/methods , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Individuality , Leeches/genetics , Leeches/metabolism , Models, Biological , Organ Specificity/physiology , Species Specificity , Transgenes
5.
J Biol Chem ; 279(52): 54567-72, 2004 Dec 24.
Article in English | MEDLINE | ID: mdl-15475365

ABSTRACT

The integrin alpha(v)beta(3) has been shown to exist in low and high affinity conformations. Activation to the high affinity state is thought to depend on the "switchblade-like" opening, from a low affinity bent conformation with a closed headpiece to an extended form of the integrin with an open headpiece. Activation has been shown to depend on separation of the cytoplasmic domains. How cytoplasmic domain separation is related to separation of the transmembrane domains is unknown, and the distance of separation of the transmembrane domains required for activation has not been defined. A constrained secreted form of alpha(v)beta(3) was engineered that introduced a 50-A separation of the integrin C-terminal tails of the extracellular domains of the alpha(v) and beta(3) subunits. Receptor binding and recognition by ligand-induced binding state (LIBS) monoclonal antibodies demonstrated that the mutant receptor was locked into a low affinity state that was likely in a partially extended conformation but with a closed headpiece. In the presence of RGD peptide, the constrained receptor was able to fully extend, as determined by full exposure of LIBS epitopes. In the presence of the appropriate LIBS antibody, high affinity ligand binding of the constrained receptor was achieved. The results support the existence of transient intermediate activation states of secreted alpha(v)beta(3). Furthermore, these results with the secreted alpha(v)beta(3) receptor support a model for the full-length membrane-bound form of alpha(v)beta(3), whereby a 50-A lateral separation of the integrin alpha(v) and beta(3) transmembrane domains would be sufficient to enforce the switchblade-like opening to the extended conformation but insufficient for full receptor activation.


Subject(s)
Integrin alphaVbeta3/chemistry , Integrin alphaVbeta3/physiology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Binding Sites , Cell Membrane/metabolism , Chromatography, Gel , Cytoplasm/chemistry , Dimerization , Humans , Immunosorbent Techniques , Integrin alphaVbeta3/genetics , Ligands , Models, Molecular , Molecular Structure , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/genetics , Placenta/enzymology , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...