Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Chem Sci ; 14(35): 9283-9292, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712032

ABSTRACT

We show the emergence of strong catalytic activity at low concentrations in dynamic libraries of complementary sequence-defined oligomeric chains comprising pendant functional catalytic groups and terminal recognition units. In solution, the dynamic constitutional library created from pairs of such complementary oligomers comprises free oligomers, self-assembled di(oligomeric) macrocycles, and a virtually infinite collection of linear poly(oligomeric) chains. We demonstrate, on an exemplary catalytic system requiring the cooperation of no less than five chemical groups, that supramolecular di(oligomeric) macrocycles exhibit a catalytic turnover frequency ca. 20 times larger than the whole collection of linear poly(oligomers) and free chains. Molecular dynamics simulations and network analysis indicate that self-assembled supramolecular di(oligomeric) macrocycles are stabilized by different interactions, among which chain end pairing. We mathematically model the catalytic properties of such complex dynamic libraries with a small set of physically relevant parameters, which provides guidelines for the synthesis of oligomers capable to self-assemble into functionally-active supramolecular macrocycles over a larger range of concentrations.

2.
J Chem Inf Model ; 62(11): 2761-2770, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35608867

ABSTRACT

Similar to biological macromolecules such as DNA and proteins, the precise control over the monomer position in sequence-defined polymers is of paramount importance for tuning their structures and properties toward achieving specific functions. Here, we apply molecular network analysis on three-dimensional structures issued from molecular dynamics simulations to decipher how the chain organization of trifunctional catalytic oligomers is influenced by the oligomer sequence and the length of oligo(ethylene oxide) spacers. Our findings demonstrate that the tuning of their primary structures is crucial for favoring cooperative interactions between the catalytic units and thus higher catalytic activities. This combined approach can assist in establishing structure-property relationships, leading to a more rational design of sequence-defined catalytic oligomers via computational chemistry.


Subject(s)
Molecular Dynamics Simulation , Polymers , Polymers/chemistry
3.
Biosensors (Basel) ; 11(2)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33670061

ABSTRACT

Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and better sensitivity, technologies combining paper-based substrates and electrical detection are being developed. In this work, we demonstrate the potential of electrical measurements by means of a simple, parallel-plate electrode setup towards the detection of whole-cell bacteria captured in nitrocellulose (NC) membranes. Unlike current electrical sensors, which are mostly integrated, this plug and play system has reusable electrodes and enables simple and fast bacterial detection through impedance measurements. The characterized NC membrane was subjected to (i) a biofunctionalization, (ii) different saline solutions modelling real water samples, and (iii) bacterial suspensions of different concentrations. Bacterial detection was achieved in low conductivity buffers through both resistive and capacitive changes in the sensed medium. To capture Bacillus thuringiensis, the model microorganism used in this work, the endolysin cell-wall binding domain (CBD) of Deep-Blue, a bacteriophage targeting this bacterium, was integrated into the membranes as a recognition bio-interface. This experimental proof-of-concept illustrates the electrical detection of 107 colony-forming units (CFU) mL-1 bacteria in low-salinity buffers within 5 min, using a very simple setup. This offers perspectives for affordable pathogen sensors that can easily be reconfigured for different bacteria. Water quality testing is a particularly interesting application since it requires frequent testing, especially in emergency situations.


Subject(s)
Cellulose/chemistry , Environmental Monitoring/methods , Water Microbiology , Water Pollution/analysis , Biosensing Techniques , Electric Impedance , Electrodes , Water
4.
ACS Appl Mater Interfaces ; 12(45): 50303-50314, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33119274

ABSTRACT

Cell culture on microcarriers emerges as an alternative of two-dimensional culture to produce large cell doses, which are required for cell-based therapies. Herein, we report a versatile and easy solvent-free greener fabrication process to prepare microcarriers based on a biosourced and compostable polymer. The preparation of the microcarrier core, which is based on poly(L-lactide) crystallization from a polymer blend, allows us to easily tune the density, porosity, and size of the microparticles. A bioadhesive coating based on biopolymers, devoid of animal protein and optimized to improve cell adhesion, is then successfully deposited on the surface of the microcarriers. The ability of these new microcarriers to expand human adipose-derived stromal cells with good yield, in semistatic and dynamic conditions, is demonstrated. Finally, bead-to-bead cell transfer is shown to increase the yield of cell production without having to stop the culture. These microcarriers are therefore a promising and efficient green alternative to currently existing systems.


Subject(s)
Adipose Tissue/cytology , Cell Culture Techniques , Mesenchymal Stem Cells/cytology , Polyesters/chemistry , Cell Adhesion , Cells, Cultured , Crystallization , Humans , Particle Size , Porosity , Surface Properties
5.
Tissue Eng Part B Rev ; 26(5): 461-474, 2020 10.
Article in English | MEDLINE | ID: mdl-32098603

ABSTRACT

In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.


Subject(s)
Adipose Tissue/cytology , Cell Differentiation , Osteogenesis , Translational Research, Biomedical , Animals , Clinical Trials as Topic , Humans , Stromal Cells/cytology
6.
ACS Appl Bio Mater ; 3(1): 522-530, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-35019395

ABSTRACT

An antioxidant material composed of halloysite nanotubes (HNTs), protamine sulfate polyelectrolyte (PSP), and superoxide dismutase (SOD) enzyme was prepared by self-assembly of the PSP and SOD biomacromolecules on the nanoparticulate support. The structural, colloidal and biocatalytic features were assessed. Adsorption of PSP on the oppositely charged HNT surface at appropriate loadings gave rise to charge neutralization and overcharging, which resulted in unstable and stable dispersions, respectively. The formation of a saturated PSP layer on the HNT led to the development of positive surface charge and to remarkable resistance against salt-induced aggregation making the obtained HNT-PSP hybrid suitable for immobilization of negatively charged SOD. No enzyme leakage was observed from the HNT-PSP-SOD composite indicating sufficient structural stability of this material due to electrostatic, hydrophobic, and hydrogen bonding interactions taking place between the particles and the biomacromolecules. Enzymatic assays revealed that SOD kept its functional integrity upon immobilization and showed high activity in superoxide radical dismutation. In this way, stable antioxidant bionanocomposite dispersions were obtained, which can be used as antioxidants in heterogeneous samples.

7.
ACS Appl Bio Mater ; 3(3): 1520-1532, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-35021643

ABSTRACT

The development of a functional in vitro model for microcirculation is an unresolved challenge, with major impact for the creation and regeneration of organs in the tissue engineering. The absence of prevascularized engineered tissues limits enormously their efficacy and integration. Therefore, in this study, the in vitro formation of tubular-like structures with human umbilical vein endothelial cells (HUVECs) is investigated thanks to three-dimensional polycarbonate (PC) microchannel (µCh) scaffolds, surface biofunctionalized with hyaluronic acid/chitosan (HA/CHI) layer-by-layer (LbL) films grafted with adhesive (RGD) and angiogenic (SVV and QK) peptides, alone and in combination. The importance of this work lies in the formation of capillaries in the order of tens of µm, developing spontaneous microvessels, without the complexity of microfluidic approaches, and in a short time-scale. Ellipsometry, confocal laser scanning microscopy, and fluorospectrometry are used to characterize the biofunctionalized microchannels. PC-µCh scaffolds functionalized with (HA/CHI)12.5 film (PC-LbL) and further grafted with RGD and QK peptides (PC-RGD+QK) or with RGD and SVV peptides (PC-RGD+SVV) are then tested for in vitro blood vessel formation. These assays evidence a rapid formation of tubular-like structures after 2 h of incubation. Moreover, a coculture system involving HUVECs and human pericytes derived from placenta (hPCs-PL) stabilizes the tubes for a longer time.

8.
ACS Omega ; 4(15): 16660-16666, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616848

ABSTRACT

We report on a simple and versatile method for the preparation in one-step of omniphobic textiles, using only aqueous suspensions of silica particles and polyurethane devoid of long perfluoroalkyl chains (C8) that are now legally-banned because of severe environmental concerns. The omniphobic coatings can be applied on different substrates including fabrics, can resist acidic and basic conditions and a moderate number of washing cycles, and repel liquids such as n-octane, dodecane, hexadecane, ethylene glycol, glycerol, olive oil, and water. Analysis of the wetting properties of coated fabrics indicates that the liquid repellence results from the trapping of air in the re-entrant roughness created by aggregates of silica particles, together with the low surface tension of the polyurethane which bears legally accepted short perfluoroalkyl chains (C4). Our study is a significant step forward toward achieving more environmentally-friendly and robust omniphobic textiles.

9.
Stem Cell Res Ther ; 10(1): 256, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31412950

ABSTRACT

BACKGROUND: Human adipose-derived stromal cells (hASCs) have been gaining increasing popularity in regenerative medicine thanks to their multipotency, ease of collection, and efficient culture. Similarly to other stromal cells, their function is particularly sensitive to the culture conditions, including the composition of the culture medium. Given the large number of parameters that can play a role in their specification, the rapid assessment would be beneficial to allow the optimization of their culture parameters. METHOD: Herein we used the design of experiments (DOE) method to rapidly screen the influence and relevance of several culture parameters on the osteogenic differentiation of hASCs. Specifically, seven cell culture parameters were selected for this study based on a literature review. These parameters included the source of hASCs (the different providers having different methods for processing the cells prior to their external use), the source of serum (fetal bovine serum vs. human platelet lysate), and several soluble osteoinductive factors, including dexamethasone and a potent growth factor, the bone morphogenetic protein-9 (BMP-9). The expression of alkaline phosphatase was quantified as a readout for the osteogenic differentiation of hASCs. RESULTS: The DOE analysis enabled to classify the seven studied parameters according to their relative influence on the osteogenic differentiation of hASCs. Notably, the source of serum was found to have a major effect on the osteogenic differentiation of hASCs as well as their origin (different providers) and the presence of L-ascorbate-2-phosphate and BMP-9. CONCLUSION: The DOE-based screening is a valuable approach for the classification of the impact of several cell culture parameters on the osteogenic differentiation of hASCs.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis , Research Design , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Tissue Engineering
10.
Colloids Surf B Biointerfaces ; 178: 508-514, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30928390

ABSTRACT

The development of sturdy enzyme-containing hydrophilic coatings is important for applications such as water purification or biological sensing. Here, we investigate the encapsulation of a model enzyme (beta-lactamase, BlaP) into aluminosilicate halloysite nanotubes (HNTs), and their subsequent use for the fabrication of enzymatic coatings by layer-by-layer (LbL) assembly. Highly stable suspensions of enzymatically-active halloysite nanotubes were obtained by alkaline treatment of HNTs, followed by enzyme adsorption into the lumen of the nanotubes and of poly(ethylene imine) (PEI) onto their outer surface. Bioactive thin films based on the LbL-assembly of these modified nanotubes with negatively-charged alginate provided coatings with a significantly higher enzymatic activity compared to films in which the enzyme is not incorporated in the nanotubes. The obtained results show that the encapsulation of an enzyme in halloysite nanotubes is a viable route towards stable bioactive coatings, which could be easily adapted to entrap other types of biomacromolecules with the aim of preparing thin films for air or effluent decontamination.


Subject(s)
Colloids/chemistry , Nanotubes/chemistry , Polyelectrolytes/chemistry , beta-Lactamases/chemistry , Imines/chemistry , Polyethylenes/chemistry , Surface Properties
11.
Nanoscale Adv ; 1(6): 2208-2215, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-36131957

ABSTRACT

A process combining electrochemical nanofabrication by hard templating with the use of a masking strategy and surface functionalization methods, is developed to produce arrays of gold nanopillars of spatially-controlled surface chemistry. Therefore, a gold nanopillar array is first fabricated by performing metal electrochemical deposition into a track-etched membrane supported on a gold substrate. After dissolution of the membrane, a protective polymer layer is deposited on the array and partially etched to specifically reveal the top of the nanopillars. Then, a polythiolactone-based copolymer is grafted on the upper part of the nanopillars. Afterwards, the sacrificial polymer layer is dissolved to reveal the non-functionalized surface corresponding to the lower part of the gold nanopillars and the background surface. This surface is subsequently modified by a self-assembled monolayer (SAM) of alkylthiol molecules which leads to nanostructured surfaces with spatio-selective surface chemistry. The grafting of gold nanoparticles and of a bioadhesive peptide on the top and on the background of the nanopillar array, respectively, is performed to prove the versatility of the approach to produce bifunctionalized nanopillar arrays for biological, biosensing or (bio)catalysis applications.

12.
Biomacromolecules ; 20(1): 102-108, 2019 01 14.
Article in English | MEDLINE | ID: mdl-29979873

ABSTRACT

We demonstrate entrapment of the commensal skin bacteria Staphylococcus epidermidis in mats composed of soft nanotubes made by membrane-templated layer-by-layer (LbL) assembly. When cultured in broth, the resulting nanofibrillar patches efficiently delay the escape of bacteria and their planktonic growth, while displaying high steady-state metabolic activity. Additionally, the material properties and metabolic activity can be further tuned by postprocessing the patches with additional polysaccharide LbL layers. These patches offer a promising methodology for the fabrication of bacterial skin dressings for the treatment of skin dysbiosis while preventing adverse effects due to bacterial proliferation.


Subject(s)
Biological Dressings , Nanofibers/chemistry , Anti-Bacterial Agents/chemical synthesis , Chitosan/analogs & derivatives , Polyamines/chemistry , Polystyrenes/chemistry , Staphylococcus epidermidis/drug effects
13.
Acta Biomater ; 75: 300-311, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29883812

ABSTRACT

Porous polymeric microcarriers are a versatile class of biomaterial constructs with extensive use in drug delivery, cell culture and tissue engineering. Currently, most methods for their production require potentially toxic organic solvents with complex setups which limit their suitability for biomedical applications and their large-scale production. Herein, we report an organic, solvent-free method for the fabrication of porous poly(l-lactide) (PLLA) microcarriers. The method is based on the spherulitic crystallization of PLLA in its miscible blends with poly(ethylene glycol) (PEG). It is shown that the PLLA spherulites are easily recovered as microcarriers from the blends by a water-based process. Independent control over microcarrier size and porosity is demonstrated, with a higher crystallization temperature leading to a larger size, and a higher PLLA content in the starting blend resulting in a lower microcarrier porosity. Microcarriers are shown to be biocompatible for the culture of murine myoblasts and human adipose stromal/stem cells (hASC). Moreover, they support not only the long-term proliferation of both cell types but also hASC differentiation toward osseous tissues. Furthermore, while no significant differences are observed during cell proliferation on microcarriers of two different porosities, microcarriers of lower porosity induce a stronger hASC osteogenic differentiation, as evidenced by higher ALP enzymatic activity and matrix mineralization. Consequently, the proposed organic-solvent-free method for the fabrication of biocompatible porous PLLA microcarriers represents an innovative methodology for ex vivo cell expansion and its application in stem cell therapy and tissue engineering. STATEMENT OF SIGNIFICANCE: We report a new solvent-free method for the preparation of porous polymeric microcarriers for cell culture, based on biocompatible poly(l-lactide), with independently controllable size and porosity. This approach, based on the spherulitic crystallization in polymer blends, offers the advantages of simple implementation, biological and environmental safety, easy adaptability and up-scalablility. The suitability of these microcarriers is demonstrated for long-term culture of both murine myoblasts and human adipose stromal/stem cells (hASCs). We show that prepared microcarriers support the osteogenic differentiation of hASCs, provided microcarriers of properly-tuned porosity are used. Hence, this new method is an important addition to the arsenal of microcarrier fabrication techniques, which will contribute to the adoption, regulatory approval and eventually clinical availability of microcarrier-based treatments and therapies.


Subject(s)
Adipose Tissue/metabolism , Cell Culture Techniques/methods , Cell Proliferation , Myoblasts/metabolism , Polyesters , Stem Cells/metabolism , Adipose Tissue/cytology , Animals , Cell Line , Humans , Mice , Myoblasts/cytology , Polyesters/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Porosity , Stem Cells/cytology
14.
ACS Appl Mater Interfaces ; 10(19): 16250-16259, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29693369

ABSTRACT

Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.


Subject(s)
Staphylococcus epidermidis , Microbial Viability
15.
ACS Appl Mater Interfaces ; 10(18): 15346-15351, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29688696

ABSTRACT

We report on a facile, versatile, and environmentally friendly method to prepare superhydrophobic fabrics by a simple dip-coating method in water-based suspensions and emulsions. All the materials used are fluorine-free and commercially available at a large scale. The method can be easily integrated into standard textile industrial processes and has a strong potential for the mass production of environmentally friendly superwater-repellent fabrics. The produced fabrics show good resistance to machine washing and acidic or alkaline treatments. In addition, it is shown that superhydrophobicity can be quantitatively predicted based on the combination of the roughness of the fabric and of the fiber coating.

16.
Langmuir ; 34(18): 5234-5244, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29672069

ABSTRACT

The development of multifunctional surfaces is of general interest for the fabrication of biomedical, catalytic, microfluidic or biosensing devices. Herein, we report on the preparation of copolymer layers immobilized on gold surface and showing both free thiol and amino groups. These layers are produced by aminolysis of a thiolactone-based copolymer in the presence of a diamine, according to a one-step procedure. The free thiol and amino groups present in the modified copolymer layers can be successfully functionalized with respectively thiolated and carboxylic derivatives, in order to produce bifunctionalized surfaces. In addition, we show that the grafted thiolated derivative can be released by cleavage of the disulfide bond under mild reducing conditions. On the other hand, a side cross-linking reaction occurring during the grafting process and resulting in the formation of copolymer aggregates on the metal surface is evidenced. The methodology developed for the preparation of these bifunctionalized redox-responsive layers should be advantageously used to produce bioactive surfaces with drug loading/release properties.

17.
Sci Rep ; 6: 34141, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27678055

ABSTRACT

Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvß3 or α5ß1 integrins, we show that αVß3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5ß1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvß3 and α5ß1 integrins in the molecular clutch model.

18.
Langmuir ; 32(14): 3433-44, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27003634

ABSTRACT

The temperature-dependence of the volume and surface hydrophilicity of a series of water-swollen dense polymer brushes is measured by contact angle measurements in the captive bubble configuration, by ellipsometry, and by quartz crystal microbalance with dissipation monitoring (QCM-D). Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and poly(di(methoxyethoxy)ethyl methacrylate) (PMEO2MA), strongly hydrophilic poly(N,N-dimethylacrylamide) (PDMA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA), and weakly hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) brushes were synthesized by surface-initiated atom-transfer radical polymerization (SI-ATRP). Conditions leading to reproducible measurements of the contact angle are first provided, giving access to the surface hydrophilicity. Volume hydrophilicity is quantified by measuring the swelling of the brushes, either by QCM-D or by ellipsometry. A model-free methodology is proposed to analyze the QCM-D data. Comparison between the acoustic and optical swelling coefficients shows that QCM-D is sensitive to the maximal thickness of swollen brushes, while ellipsometry provides an integral thickness. Diagrams of surface versus volume hydrophilicity of the brushes finally lead to identify two types of behavior: strongly water-swollen brushes exhibit a progressive decrease of volume hydrophilicity with temperature, while surface hydrophilicity changes moderately; weakly water-swollen brushes have a close-to-constant volume hydrophilicity, while surface hydrophilicity decreases with temperature. Thermoresponsive brushes abruptly switch from one behavior to the other, and do not exhibit an abrupt change of surface hydrophilicity across their collapse transition contrarily to a common erroneous belief. In general, there is no direct correlation between surface and volume hydrophilicity, because surface properties are dependent on the details of conformation and composition at the surface, whereas volume properties are averaged over a finite region within the brush.

19.
J Mater Chem B ; 4(47): 7651-7661, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-32263821

ABSTRACT

Mats of nanofibers are important as biological scaffolds, (bio)functional electrodes, or smart membranes. Herein, we show that layer-by-layer (LbL) assembly of a wide variety of compounds in nanoporous templates, followed by a straightforward filtration methodology of the nanotubes after membrane dissolution, leads to the fabrication of LbL nanopapers over centimeter square surfaces. The texture of the nanopapers can be easily tuned by varying the rigidity of the nanofibers, which can be achieved by changing their wall thickness, crosslinking them, or developing nanotubes with a core-shell structure. In the nanopapers, the tubes deform by different mechanisms, including flattening, twisting and scrolling, depending on tube rigidity. The possibility to manufacture multilayered nanopapers made of stacks of different nanofibers, or chemically post-functionalize them, is also demonstrated; in addition, the fabrication of enzymatically-active nanopapers is shown. Considering the vast range of materials which can be used for the construction of nanotubes including, e.g., proteins, polysaccharides, conducting polymers or nanoparticles, and the many possible post-functionalization techniques of LbL films, the methodology offers a very flexible route to a virtually limitless collection of functional smart nanopapers.

20.
ACS Appl Mater Interfaces ; 6(24): 22457-66, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25437253

ABSTRACT

The development of thin macromolecular layers with incorporated disulfide bonds that can be disrupted and formed again under redox stimulation is of general interest for drug release applications, because such layers can provide rapid and reversible responses to specific biological systems and signals. However, the preparation of such layers from polythiols remains difficult, because of the fast oxidation of thiol groups in ambient conditions. Here we propose water-soluble thiolactone-containing copolymers as stable precursors containing protected thiol groups, allowing us to produce on demand polythiol layers on gold substrates in the presence of amine derivatives. Electrochemical, water contact angle, X-ray photoelectron spectroscopy, and X-ray reflectometry measurements evidence the formation of uniform copolymer layers containing both anchored and free thiol groups. The number of free thiols increases with the content of thiolactone units in the copolymers. In a second step, a thiolated dye, used as a model drug, was successfully grafted on the free thiol groups through disulfide bonds using mild oxidizing conditions, as proved by fluorescence and quartz crystal microbalance measurements. Finally, the reversible release/regrafting of the dye under redox stimulation is demonstrated.


Subject(s)
Delayed-Action Preparations/chemistry , Disulfides/chemistry , Gold/chemistry , Lactones/chemistry , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Adsorption , Materials Testing , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL