Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 86(6): 667-679, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225590

ABSTRACT

Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.


Subject(s)
Alzheimer Disease/metabolism , Mitochondrial Diseases/metabolism , Alzheimer Disease/complications , Animals , DNA, Mitochondrial/chemistry , Energy Metabolism , Female , Humans , Male , Mitochondria/metabolism , Mitochondrial Diseases/complications , Oxidative Stress
2.
PLoS One ; 15(6): e0233767, 2020.
Article in English | MEDLINE | ID: mdl-32531779

ABSTRACT

Functional and anatomical connection between the liver and the spleen is most clearly manifested in various pathological conditions of the liver (cirrhosis, hepatitis). The mechanisms of the interaction between the two organs are still poorly understood, as there have been practically no studies on the influence exerted by the spleen on the normal liver. Mature male Sprague-Dawley rats of 250-260 g body weight, 3 months old, were splenectomized. The highest numbers of Ki67+ hepatocytes in the liver of splenectomized rats were observed at 24 h after the surgery, simultaneously with the highest index of Ki67-positive hepatocytes. After surgical removal of the spleen, expression of certain genes in the liver tissues increased. A number of genes were upregulated in the liver at a single time point of 24 h, including Ccne1, Egf, Tnfa, Il6, Hgf, Met, Tgfb1r2 and Nos2. The expression of Ccnd1, Tgfb1, Tgfb1r1 and Il10 in the liver was upregulated over the course of 3 days after splenectomy. Monitoring of the liver macrophage populations in splenectomized animals revealed a statistically significant increase in the proportion of CD68-positive cells in the liver (as compared with sham-operated controls) detectable at 24 h and 48 h after the surgery. The difference in the liver content of CD68-positive cells between splenectomized and sham-operated animals evened out by day 3 after the surgery. No alterations in the liver content of CD163-positive cells were observed in the experiments. A decrease in the proportion of CD206-positive liver macrophages was observed at 48 h after splenectomy. The splenectomy-induced hepatocyte proliferation is described by us for the first time. Mechanistically, the effect is apparently induced by the removal of spleen as a major source of Tgfb1 (hepatocyte growth inhibitor) and subsequently supported by activation of proliferation factor-encoding genes in the liver.


Subject(s)
Cell Proliferation , Hepatocytes/metabolism , Splenectomy/adverse effects , Animals , Hepatocytes/physiology , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Macrophages/physiology , Male , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
BMC Immunol ; 19(1): 23, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29986661

ABSTRACT

BACKGROUND: In many clinical cases of extensive liver resection (e.g. due to malignancy), the residual portion is too small to maintain the body homeostasis. The resulting acute liver failure is associated with the compensatory growth inhibition, which is a typical manifestation of the 'small for size' liver syndrome. The study investigates possible causes of the delayed onset of hepatocyte proliferation after subtotal hepatectomy (80% liver resection) in rats. RESULTS: The data indicate that the growth inhibition correlates with delayed upregulation of the Tnf gene expression and low content of the corresponding Tnfα protein within the residual hepatic tissue. Considering the involvement of Tnf/Tnfα, the observed growth inhibition may be related to particular properties of liver macrophages - the resident Kupffer cells with CD68+CX1CR3-CD11b- phenotype. CONCLUSIONS: The delayed onset of hepatocyte proliferation correlates with low levels of Tnfα in the residual hepatic tissue. The observed growth inhibition possibly reflects specific composition of macrophage population of the liver. It is entirely composed of embryonically-derived Kupffer cells, which express the 'proregeneratory' M2 macrophage-specific marker CD206 in the course of regeneration.


Subject(s)
Liver Regeneration , Liver/growth & development , Liver/surgery , Macrophages/immunology , Animals , Hepatectomy/adverse effects , Hepatocytes/cytology , Hepatocytes/immunology , Kupffer Cells/cytology , Kupffer Cells/immunology , Lectins, C-Type/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...