Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36236289

ABSTRACT

Concrete exhibits time-dependent long-term behavior driven by creep and shrinkage. These rheological effects are difficult to predict due to their stochastic nature and dependence on loading history. Existing empirical models used to predict rheological effects are fitted to databases composed largely of laboratory tests of limited time span and that do not capture differential rheological effects. A numerical model is typically required for application of empirical constitutive models to real structures. Notwithstanding this, the optimal parameters for the laboratory databases are not necessarily ideal for a specific structure. Data-driven approaches using structural health monitoring data have shown promise towards accurate prediction of long-term time-dependent behavior in concrete structures, but current approaches require different model parameters for each sensor and do not leverage geometry and loading. In this work, a physics-informed data-driven approach for long-term prediction of 2D normal strain field in prestressed concrete structures is introduced. The method employs a simplified analytical model of the structure, a data-driven model for prediction of the temperature field, and embedding of neural networks into rheological time-functions. In contrast to previous approaches, the model is trained on multiple sensors at once and enables the estimation of the strain evolution at any point of interest in the longitudinal section of the structure, capturing differential rheological effects.


Subject(s)
Physics , Temperature
2.
Sensors (Basel) ; 22(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35336568

ABSTRACT

Strain is one of the most frequently monitored parameters in civil structural health monitoring (SHM) applications, and strain-based approaches were among the first to be explored and applied in SHM. There are multiple reasons why strain plays such an important role in SHM: strain is directly related to stress and deflection, which reflect structural performance, safety, and serviceability. Strain field anomalies are frequently indicators of unusual structural behaviors (e.g., damage or deterioration). Hence, the earliest concepts of strain sensing were explored in the mid-XIX century, the first effective strain sensor appeared in 1919, and the first onsite applications followed in the 1920's. Today, one hundred years after the first developments, two generations of strain sensors, based on electrical and fiber-optic principles, firmly reached market maturity and established themselves as reliable tools applied in strain-based SHM. Along with sensor developments, the application methods evolved: the first generation of discrete sensors featured a short gauge length and provided a basis for local material monitoring; the second generation greatly extended the applicability and effectiveness of strain-based SHM by providing long gauge and one-dimensional (1D) distributed sensing, thus enabling global structural and integrity monitoring. Current research focuses on a third generation of strain sensors for two-dimensional (2D) distributed and quasi-distributed sensing, based on new advanced technologies. On the occasion of strain sensing centenary, and as an homage to all researchers, practitioners, and educators who contributed to strain-based SHM, this paper presents an overview of the first one hundred years of strain sensing technological progress, with the objective to identify relevant transformative milestones and indicate possible future research directions.


Subject(s)
Electricity , Fiber Optic Technology , Monitoring, Physiologic
3.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34300668

ABSTRACT

While there is a significant body of research on crack detection by computer vision methods in concrete and asphalt, less attention has been given to masonry. We train a convolutional neural network (CNN) on images of brick walls built in a laboratory environment and test its ability to detect cracks in images of brick-and-mortar structures both in the laboratory and on real-world images taken from the internet. We also compare the performance of the CNN to a variety of simpler classifiers operating on handcrafted features. We find that the CNN performed better on the domain adaptation from laboratory to real-world images than these simple models. However, we also find that performance is significantly better in performing the reverse domain adaptation task, where the simple classifiers are trained on real-world images and tested on the laboratory images. This work demonstrates the ability to detect cracks in images of masonry using a variety of machine learning methods and provides guidance for improving the reliability of such models when performing domain adaptation for crack detection in masonry.


Subject(s)
Machine Learning , Neural Networks, Computer , Reproducibility of Results
4.
Sensors (Basel) ; 20(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138331

ABSTRACT

Damage significantly influences response of a strain sensor only if it occurs in the proximity of the sensor. Thus, two-dimensional (2D) sensing sheets covering large areas offer reliable early-stage damage detection for structural health monitoring (SHM) applications. This paper presents a scalable sensing sheet design consisting of a dense array of thin-film resistive strain sensors. The sensing sheet is fabricated using flexible printed circuit board (Flex-PCB) manufacturing process which enables low-cost and high-volume sensors that can cover large areas. The lab tests on an aluminum beam showed the sheet has a gauge factor of 2.1 and has a low drift of 1.5 µ ϵ / d a y . The field test on a pedestrian bridge showed the sheet is sensitive enough to track strain induced by the bridge's temperature variations. The strain measured by the sheet had a root-mean-square (RMS) error of 7 µ ϵ r m s compared to a reference strain on the surface, extrapolated from fiber-optic sensors embedded within the bridge structure. The field tests on an existing crack showed that the sensing sheet can track the early-stage damage growth, where it sensed 600 µ ϵ peak strain, whereas the nearby sensors on a damage-free surface did not observe significant strain change.


Subject(s)
Monitoring, Physiologic/instrumentation , Temperature
5.
Philos Trans A Math Phys Eng Sci ; 377(2155): 20190002, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31424346

ABSTRACT

Heritage structures serve as invaluable records of cultural achievement that should be preserved for future generations. To ensure the successful preservation of these structures, there must be an affordable and effective way to conduct conservation. The objective of this work is to outline an efficient workflow for the structural analysis of preservation projects through a case study on the Morris Island Lighthouse in Charleston, South Carolina. Thorough documentation of the cultural significance and structural condition of the lighthouse was completed through archival research, photogrammetry and crack mapping. Structural Health Monitoring and Distinct Element Modelling were used to analyse past structural damage and the present condition. The behaviour of masonry and crack propagation was evaluated under gravity, wind, wave and seismic loading. The results of these analyses were summarized in a virtual tour and informational modelling environment, which allows the results to be accessed and associated with their physical location on the structure. The benefits and limitations of this process are discussed, and a standardized workflow for efficient structural analysis of cultural heritage is proposed. This article is part of the theme issue 'Environmental loading of heritage structures'.

6.
Sensors (Basel) ; 19(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959791

ABSTRACT

In civil structures and infrastructure, assessing true performance and characterizing unusual structural behaviors can help avoid severe structural problems. To further refine or validate the conclusions from structural health monitoring (SHM) analyses, nondestructive evaluation or techniques (NDE or NDT) can be applied in conjunction with SHM approaches. Ground penetrating radar (GPR) is an NDT that has been used to investigate defects and internal features in concrete structures, but is not commonly used to assess mechanical properties for the purposes of SHM. As a preliminary investigation of the effectiveness of attribute analysis techniques, a GPR survey was conducted on Streicker Bridge (a pedestrian bridge on Princeton University campus with embedded fiber-optic strain and temperature sensors). The bridge was constructed in two phases, where different curing conditions produced different material properties (compressive strength of 51 MPa and 59 MPa). Both standard processing techniques and attribute analysis techniques were employed to interpret GPR reflections in each phase of construction to identify construction elements and to compare the attribute signatures of different strength concretes.Though this study presents primarily relative differences, the sensitivity of these attributes to material property differences is confirmed. This validates SHM studies of the bridge and indicates the potential of the attribute analysis method for material characterization, especially as a compliment to other SHM and NDE techniques.


Subject(s)
Environmental Monitoring/methods , Radar , Humans
7.
Sensors (Basel) ; 18(6)2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895727

ABSTRACT

Sensing sheets based on Large Area Electronics (LAE) and Integrated Circuits (ICs) are novel sensors designed to enable reliable early-stage detection of local unusual structural behaviors. Such a device consists of a dense array of strain sensors, patterned onto a flexible polyimide substrate along with associated electronics. Previous tests performed on steel specimens equipped with sensing sheet prototypes and subjected to fatigue cracking pointed to a potential issue: individual sensors that were on or near a crack would immediately be damaged by the crack, thereby rendering them useless in assessing the size of the crack opening or to monitor future crack growth. In these tests, a stiff adhesive was used to bond the sensing sheet prototype to the steel specimen. Such an adhesive provided excellent strain transfer, but it also caused premature failure of individual sensors within the sheet. Therefore, the aim of this paper is to identify an alternative adhesive that survives minor damage, yet provides strain transfer that is sufficient for reliable early-stage crack detection. A sensor sheet prototype is then calibrated for use with the selected adhesive.

8.
Sensors (Basel) ; 18(3)2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29494496

ABSTRACT

Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.


Subject(s)
Temperature , Humans , Mechanical Phenomena
9.
Sensors (Basel) ; 18(2)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401751

ABSTRACT

The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

10.
Sensors (Basel) ; 18(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337877

ABSTRACT

Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.


Subject(s)
Metadata , Monitoring, Physiologic
11.
Small ; 12(21): 2832-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27061270

ABSTRACT

The polarity and the magnitude of polyaniline's gauge factor are tuned through structural modification. Combining conducting polymers with gauge factors of opposite polarities yields an accurate temperature sensor, even when deployed under dynamic strains.

12.
Sensors (Basel) ; 15(4): 8088-108, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25853407

ABSTRACT

Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...