Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 65(4): 1020-8, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11566722

ABSTRACT

The aim was to investigate potential interactions between FSH and intraovarian growth factors in modulating secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E2), and progesterone (P4) by bovine granulosa cells cultured under conditions in which a nonluteinized FSH-responsive phenotype is maintained. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin (10 ng/ml) and androstenedione (10(-7) M), and effects of ovine FSH (0.037-3 ng/ml) were tested alone and in combination with insulin-like growth factors (IGF) (LR3 IGF-I analogue; 2-50 ng/ml) and epidermal growth factor (EGF; 0.1-10 ng/ml). Medium was changed every 48 h and cultures ended after 144 h, when cell number was determined. Between 48-96 h and 96-144 h, FSH promoted (P < 0.0001) increases in output of inh A (6-fold), act A (15-fold), FS (6-fold), and E2 (18-fold), with maximal responses (in parentheses) elicited by 0.33 ng/ml FSH during the final period. Higher FSH doses (1 and 3 ng/ml) gave reduced responses for each of the above hormones, whereas P(4) output was maximal (3-fold) at these doses. FSH promoted a slight increase in cell number ( approximately 1.7-fold; P < 0.001). LR3 IGF-I alone markedly increased (P < 0.0001) output of inh A (8-fold), act A (41-fold), FS (12-fold), and E2 (18-fold); this was accompanied by modest increases (P < 0.01) in P4 output ( approximately 2.5-fold) and cell number ( approximately 2-fold). Whereas FSH enhanced inh A, act A, FS, and E2 secretion evoked by lower doses of LR3 IGF-I, it suppressed (P < 0.001) the response to the highest dose. EGF alone promoted a 1.7-fold increase in cell number (P < 0.001) without affecting hormone release; however, it abolished (P < 0.001) FSH-induced secretion of inh A, act A, FS, and E2. Both FSH alone and LR3 IGF-I alone dose-dependently increased the act A:FS ratio ( approximately 3-fold; P < 0.005) and act A:inh A ratio (3-fold to 6-fold; P < 0.001), suggesting that both factors selectively raise activin "tone" and that this could be a key requirement for FSH and IGF-induction of follicular E2 production. This hypothesis was reinforced by the finding that addition of FS, to reduce the act A:FS ratio and sequester secreted activin, markedly suppressed (P < 0.001) FSH (3-fold)-, and LR3 IGF-I (2-fold)-induced E2 output.


Subject(s)
Cattle/physiology , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/drug effects , Growth Substances/pharmacology , Inhibins/metabolism , Insulin-Like Growth Factor I/analogs & derivatives , Steroids/metabolism , Activins/analysis , Activins/metabolism , Androstenedione/pharmacology , Animals , Cell Count , Cells, Cultured , Culture Media, Serum-Free , Drug Interactions , Epidermal Growth Factor/pharmacology , Estradiol/metabolism , Female , Follistatin , Granulosa Cells/physiology , Inhibin-beta Subunits/analysis , Inhibin-beta Subunits/metabolism , Insulin/pharmacology , Insulin-Like Growth Factor I/pharmacology , Progesterone/metabolism
2.
Reproduction ; 121(4): 503-12, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11277869

ABSTRACT

The changing pattern of granulosa cell expression of inhibin/activin subunits and follistatin during follicle development and their differential regulation by extrinsic and intraovarian factors supports evidence from functional studies, mostly in vitro, that these proteins have important roles in folliculogenesis, oocyte maturation and corpus luteum function. Gonadal inhibins function as negative feedback hormones to regulate the synthesis and secretion of pituitary FSH, a key determinant of follicle development, but there is little supportive evidence for a peripheral endocrine role for ovary-derived activins or follistatin in this regard. However, activins and follistatin are expressed in numerous other tissues, including anterior pituitary, and they are firmly implicated as local intrapituitary regulators of FSH secretion. Intraovarian actions of granulosa cell-derived activins include the promotion of granulosa cell proliferation and upregulation of FSH receptors, P450arom, oestrogen synthesis, granulosa cell LH receptors and enhancement of oocyte maturation. Through its activin-binding role, follistatin can reverse each of these activin-induced responses. In addition to their endocrine feedback role, granulosa-derived inhibins can sensitize theca cells to LH, thereby enhancing the production of androgens, an essential requirement for follicular oestrogen synthesis. Activins can oppose this effect and suppress thecal androgen production. Granulosa cells overproduce inhibin a subunit precursor relative to betaA/betaB subunit precursors and evidence indicates that different parts of the inhibin a subunit precursor have intrinsic biological activities distinct from inhibin alphabetaA/B dimer, and serve as additional local modulators of follicle and corpus luteum function.


Subject(s)
Glycoproteins/physiology , Inhibins/physiology , Ovary/physiology , Activins , Animals , Corpus Luteum/physiology , Female , Follistatin , Granulosa Cells/physiology , Humans , Oocytes/physiology , Theca Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...