Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836331

ABSTRACT

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Subject(s)
Brain , Inhalation Exposure , Rats, Wistar , Tungsten , Animals , Tungsten/toxicity , Male , Inhalation Exposure/adverse effects , Brain/drug effects , Brain/metabolism , Rats , Biomarkers/metabolism , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Lung/drug effects , Lung/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects
2.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955476

ABSTRACT

Male infertility is a major public health issue that can be induced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. Regarding the human population exposed to uranium, it is necessary to explore these effects on male reproduction in multigenerational studies. The sensitivity of mass spectrometry (MS)-based methods has already proved to be extremely useful in metabolite identification in rats exposed to low doses of uranium, but also in human sperm. We applied this method to rat sperm over three generations (F0, F1 and F2) with multigenerational uranium exposure. Our results show a significant content of uranium in generation F0, and a reduction in the pregnancy rate only in generation F1. Based on principal component analysis (PCA), we observed discriminant profiles between generations. The partial least squares discriminant analysis (PLS-DA) of the 48 annotated variables confirmed that parental exposure of generation F0 (during both the preconceptional and prenatal periods) can have metabolic effects on spermatozoa for the next two generations. Metabolomics applied to epididymal spermatozoa is a novel approach to detecting the multigenerational effects of uranium in an experimental model, but could be also recommended to identify potential biomarkers evaluating the impact of uranium on sperm in exposed infertile men.


Subject(s)
Endocrine Disruptors , Uranium , Animals , Endocrine Disruptors/pharmacology , Female , Humans , Male , Metabolome , Pregnancy , Rats , Reproduction , Semen , Spermatozoa , Uranium/toxicity
3.
Metabolites ; 12(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35629925

ABSTRACT

Changes in metabolomics over time were studied in rats to identify early biomarkers and highlight the main metabolic pathways that are significantly altered in the period immediately following acute low-dose uranium exposure. A dose response relationship study was established from urine and plasma samples collected periodically over 9 months after the exposure of young adult male rats to uranyl nitrate. LC-MS and biostatistical analysis were used to identify early discriminant metabolites. As expected, low doses of uranium lead to time-based non-toxic biological effects, which can be used to identify early and delayed markers of exposure in both urine and plasma samples. A combination of surrogate markers for uranium exposure was validated from the most discriminant early markers for making effective predictions. N-methyl-nicotinamide, kynurenic acid, serotonin, tryptophan, tryptamine, and indole acetic acid associated with the nicotinate-nicotinamide and tryptophan pathway seem to be one of the main biological targets, as shown previously for chronic contaminations and completed, among others, by betaine metabolism. This study can be considered as a proof of concept for the relevance of metabolomics in the field of low-dose internal contamination by uranium, for the development of predictive diagnostic tests usable for radiotoxicological monitoring.

4.
J Trace Elem Med Biol ; 64: 126708, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33360916

ABSTRACT

BACKGROUND: Despite their differences in physicochemical properties, both uranium (U) and fluoride (F) are nephrotoxicants at high doses but their adverse effects at low doses are still the subject of debate. METHODS: This study aims to improve the knowledge of the biological mechanisms involved through an adaptive response model of C57BL/6 J mice chronically exposed to low priming doses of U (0, 10, 20 and 40 mg/L) or F (0, 15, 30 and 50 mg/L) and then challenged with acute exposure of 5 mg/kg U or 7.5 mg/kg NaF. RESULTS: We showed that an adaptive response occurred with priming exposures to 20 mg/L U and 50 mg/L F, with decreased levels of the biomarkers KIM-1 and CLU compared to those in animals that received the challenge dose only (positive control). The adaptive mechanisms involved a decrease in caspase 3/7 activities in animals exposed to 20 mg/L U and a decrease in in situ VCAM expression in mice exposed to 50 mg/L F. However, autophagy and the UPR were induced independently of priming exposure to U or F and could not be identified as adaptive mechanisms to U or F. CONCLUSION: Taken together, these results allow us to identify renal adaptive responses to U and F at doses of 20 and 50 mg/L, probably through decrease apoptosis and inflammatory cell recruitment.


Subject(s)
Kidney/drug effects , Sodium Fluoride/pharmacology , Uranyl Nitrate/pharmacology , Administration, Oral , Animals , Dose-Response Relationship, Drug , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Sodium Fluoride/administration & dosage , Uranyl Nitrate/administration & dosage
5.
C R Biol ; 342(5-6): 175-185, 2019.
Article in English | MEDLINE | ID: mdl-31471143

ABSTRACT

There is increasing evidence that environmental exposures early in fetal development influence phenotype and give rise to disease risk in the next generations. We previously found that lifelong exposure to uranium, an environmental contaminant, induced subtle testicular and hormonal defects; however, its impact on the reproductive system of multiple subsequent generations was unexplored. Herein, rats were exposed to a supra-environmental and non-nephrotoxic concentration of natural uranium (U, 40 mg·L-1 of drinking water) from postnatal life to adulthood (F0), during fetal life (F1), and only as the germ cells from the F1 generation (F2). General parameters (reproductive indices, epididymal weight) and sperm morphology were assessed in the three generations. In order to identify the epigenetic effects of U, we analyzed also the global DNA methylation profile and described for the first time the mRNA expression levels of markers involved in the (de)methylation system in rat epididymal spermatozoa. Our results showed that the F1 generation had a reduced pregnancy rate. Despite the sperm number being unmodified, sperm morphology was affected in the F0, F1 and F2 generations. Morphometric analysis for ten parameters was detailed for each generation. No common parameter was detected between the three generations, but the head and the middle-piece were always modified in the abnormal sperms. In the F1 U-exposed generation, the total number of abnormal sperm was significantly higher than in the F0 and F2 generations, suggesting that fetal exposure to uranium was more deleterious. This effect could be associated with the pregnancy rate to produce the F2 generation. Interestingly, global DNA methylation analysis showed also hypomethylation in the sperm DNA of the last F2 generation. In conclusion, our study demonstrates that uranium can induce morphological sperm defects and changes in the DNA methylation level after multigenerational exposure. The epigenetic transgenerational inheritance of U-induced reproductive defects should be assessed in further experiments.


Subject(s)
DNA Methylation/radiation effects , Spermatozoa/radiation effects , Spermatozoa/ultrastructure , Uranium/toxicity , Animals , DNA/radiation effects , Environmental Pollution , Epididymis/pathology , Epididymis/radiation effects , Epigenesis, Genetic/radiation effects , Female , Fetus/radiation effects , Germ Cells/radiation effects , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Reproduction/radiation effects
6.
Article in English | MEDLINE | ID: mdl-30934888

ABSTRACT

Because of their nephrotoxicity and presence in the environment, uranium (U) and fluoride (F) represent risks to the global population. There is a general lack of knowledge regarding the mechanisms of U and F nephrotoxicity and the underlying molecular pathways. The present study aims to compare the threshold of the appearance of renal impairment and to study apoptosis and inflammation as mechanisms of nephrotoxicity. C57BL/6J male mice were intraperitoneally treated with a single dose of U (0, 2, 4 and 5 mg/kg) or F (0, 2, 5, 7.5 and 10 mg/kg) and euthanized 72 h after. Renal phenotypic characteristics and biological mechanisms were evaluated by urine biochemistry, gene/protein expression, enzyme activity, and (immuno)histological analyses. U and F exposures induced nephrotoxicity in a dose-dependent manner, and the highest concentrations induced severe histopathological alterations as well as increased gene expression and urinary excretion of nephrotoxicity biomarkers. KIM-1 gene expression was induced starting at 2 mg/kg U and 7.5 mg/kg F, and this increase in expression was confirmed through in situ detection of this biomarker of nephrotoxicity. Both treatments induced inflammation as evidenced by cell adhesion molecule expression and in situ levels, whereas caspase 3/7-dependent apoptosis was increased only after U treatment. Overall, a single dose of F or U induced histopathologic evidence of nephrotoxicity renal impairment and inflammation in mice with thresholds under 7.5 mg/kg and 4 mg/kg, respectively.


Subject(s)
Kidney/drug effects , Sodium Fluoride/toxicity , Uranyl Nitrate/toxicity , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Kidney/metabolism , Kidney/pathology , Male , Mice, Inbred C57BL
7.
Int J Radiat Biol ; 95(6): 737-752, 2019 06.
Article in English | MEDLINE | ID: mdl-30714840

ABSTRACT

Purpose: To examine the effects of low-dose exposure to uranium with a systems biology approach, a multiscale high-throughput multi-omics analysis was applied with a protocol for chronic exposure to the rat kidney. Methods: Male and female rats were contaminated for nine months through their drinking water with a nontoxic solution of uranyl nitrate. A multiscale approach enabled clinical monitoring associated with metabolomic and transcriptomic (mRNA and microRNA) analyses. Results: A sex-interaction effect was observed in the kidney, urine, and plasma metabolomes of contaminated rats. Moreover, urine and kidney metabolic profiles correlated and confirmed that the primary dysregulated metabolisms are those of nicotinate-nicotinamide and of unsaturated fatty acid biosynthesis. Upstream of the metabolic pathways, transcriptomic profiles of the kidney reveal gene activity focused on gene regulation mechanisms, cell signaling, cell structure, developmental processes, and cell proliferation. Examination of epigenetic post-transcriptional gene regulation processes showed significant dysregulation of 70 micro-RNAs. The multi-omics approach highlighted the activities of the cells' biological processes on multiple scales through analysis of gene expression, confirmed by changes observed in the metabolome. Conclusion: Our results showed changes in multi-omic profiles of rats exposed to low doses of uranium contamination, compared with controls. These changes involved gene expression as well as modifications in the transcriptome and the metabolome. The metabolomic profile confirmed that the main molecular targets of uranium in kidney cells are the metabolism of nicotinate-nicotinamide and the biosynthesis of unsaturated fatty acids. Additionally, gene expression analysis showed that the metabolism of fatty acids is targeted by processes associated with cell function. These results demonstrate that multiscale systems biology is useful in elucidating the most discriminative pathways from genomic to metabolomic levels for assessing the biological impact of this low-level environmental exposure, i.e. the exposome.


Subject(s)
Kidney/metabolism , Kidney/radiation effects , Systems Biology , Uranium/adverse effects , Animals , Biomarkers/metabolism , Dose-Response Relationship, Radiation , Female , Male , Metabolomics , Rats , Rats, Sprague-Dawley , Time Factors , Transcriptome/radiation effects
8.
Int J Radiat Biol ; 94(11): 975-984, 2018 11.
Article in English | MEDLINE | ID: mdl-29962262

ABSTRACT

PURPOSE: A protocol of chronic exposure to low dose of uranium was established in order to distinguish the sexual differences and the developmental process that are critical windows for epigenetic effects over generations. METHODS: Both male and female rats were contaminated through their drinking water with a non-toxic solution of uranyl nitrate for 9 months. The exposed generation (F0) and the following two generations (F1 and F2) were examined. Clinical monitoring, global DNA methylation profile and DNA methyltransferases (DNMTs) gene expression were analyzed in kidneys. RESULTS: While the body weight of F1 males increased, a small decrease in kidney and body weight was observed in F2 males. In addition, global DNA hypermethylation profile in kidney cells was observed in F1 and F2 males. qPCR results reveal a significant increase of methyltransferase genes expression (DNMT1 and DNMT3a) for F2 females. CONCLUSIONS: In the field of public health policy and to raise attention to generational effects for the risk assessment of the environmental exposures, low doses of uranium do not imply clinical effects on adult exposed rats. However, our results confirm the importance of the developmental windows' sensitivity in addition to the sexual dimorphisms of the offspring.


Subject(s)
Epigenesis, Genetic/radiation effects , Kidney/radiation effects , Uranium/adverse effects , Animals , Body Weight/drug effects , DNA Methylation/radiation effects , Dose-Response Relationship, Radiation , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley
9.
Dose Response ; 16(1): 1559325818755238, 2018.
Article in English | MEDLINE | ID: mdl-29531508

ABSTRACT

A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

10.
J Med Chem ; 58(4): 1644-68, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25585174

ABSTRACT

Apoptosis control defects such as the deregulation of Bcl-2 family member expression are frequently involved in chemoresistance. In ovarian carcinoma, we previously demonstrated that Bcl-xL and Mcl-1 cooperate to protect cancer cells against apoptosis and their concomitant inhibition leads to massive apoptosis even in the absence of chemotherapy. Whereas Bcl-xL inhibitors are now available, Mcl-1 inhibition, required to sensitize cells to Bcl-xL-targeting strategies, remains problematic. In this context, we designed and synthesized oligopyridines potentially targeting the Mcl-1 hydrophobic pocket, evaluated their capacity to inhibit Mcl-1 in live cells, and implemented a functional screening assay to evaluate their ability to sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. We established structure-activity relationships and focused our attention on MR29072, named Pyridoclax. Surface plasmon resonance assay demonstrated that pyridoclax directly binds to Mcl-1. Without cytotoxic activity when administered as a single agent, pyridoclax induced apoptosis in combination with Bcl-xL-targeting siRNA or with ABT-737 in ovarian, lung, and mesothelioma cancer cells.


Subject(s)
Molecular Targeted Therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Pyridines/pharmacology , bcl-X Protein/antagonists & inhibitors , Apoptosis/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Humans , Models, Molecular , Molecular Structure , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Ovarian Neoplasms/pathology , Pyridines/chemical synthesis , Pyridines/chemistry , Quantitative Structure-Activity Relationship , Quantum Theory , Tumor Cells, Cultured , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...