Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 21(8): 1723-32, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17568820

ABSTRACT

Hematopoietic stem/progenitor cells (HSC/P) reside in the bone marrow in distinct anatomic locations (niches) to receive growth, survival and differentiation signals. HSC/P localization and migration between niches depend on cell-cell and cell-matrix interactions, which result from the cooperation of cytokines, chemokines and adhesion molecules. The CXCL12-CXCR4 pathway, in particular, is essential for myelopoiesis and B lymphopoiesis but the molecular mechanisms of CXCL12 action remain unclear. We previously noted a strong correlation between prolonged CXCL12-mediated focal adhesion kinase (FAK) phosphorylation and sustained pro-adhesive responses in progenitor B cells, but not in mature B cells. Although FAK has been well studied in adherent fibroblasts, its function in hematopoietic cells is not defined. We used two independent approaches to reduce FAK expression in (human and mouse) progenitor cells. RNA interference (RNAi)-mediated FAK silencing abolished CXCL12-induced responses in human pro-B leukemia, REH cells. FAK-deficient REH cells also demonstrated reduced CXCL12-induced activation of the GTPase Rap1, suggesting the importance of FAK in CXCL12-mediated integrin activation. Moreover, in FAK(flox/flox) hematopoietic precursor cells, Cre-mediated FAK deletion resulted in impaired CXCL12-induced chemotaxis. These studies suggest that FAK may function as a key intermediary in signaling pathways controlling hematopoietic cell lodgment and lineage development.


Subject(s)
B-Lymphocytes/pathology , Cell Adhesion , Chemokines, CXC/pharmacology , Chemotaxis , Focal Adhesion Protein-Tyrosine Kinases/physiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Antigens, Ly/metabolism , Cell Differentiation , Chemokine CXCL12 , Colony-Forming Units Assay , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Hematopoietic System , Humans , Integrases/metabolism , Lentivirus , Membrane Proteins/metabolism , Mice , Mice, Knockout , Phosphorylation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-kit/metabolism , RNA Interference , Receptors, CXCR4 , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism , rap1 GTP-Binding Proteins/metabolism
2.
Nature ; 390(6658): 364-70, 1997 Nov 27.
Article in English | MEDLINE | ID: mdl-9389475

ABSTRACT

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii. The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii, A. fulgidus has fewer restriction-modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Subject(s)
Archaeoglobus fulgidus/genetics , Genes, Archaeal , Genome , Archaeoglobus fulgidus/metabolism , Archaeoglobus fulgidus/physiology , Base Sequence , Cell Division , DNA, Bacterial/genetics , Energy Metabolism , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Protein Biosynthesis , Transcription, Genetic
3.
Nature ; 388(6642): 539-47, 1997 Aug 07.
Article in English | MEDLINE | ID: mdl-9252185

ABSTRACT

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.


Subject(s)
Genome, Bacterial , Helicobacter pylori/genetics , Antigenic Variation , Bacterial Adhesion , Bacterial Proteins/metabolism , Base Sequence , Biological Evolution , Cell Division , DNA Repair , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Helicobacter pylori/metabolism , Helicobacter pylori/pathogenicity , Hydrogen-Ion Concentration , Molecular Sequence Data , Protein Biosynthesis , Recombination, Genetic , Transcription, Genetic , Virulence
4.
Plant Physiol ; 112(3): 1177-83, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8938416

ABSTRACT

The generation of large numbers of partial cDNA sequences, or expressed sequence tags (ESTs), has provided a method with which to sample a large number of genes from an organism. More than 25,000 Arabidopsis thaliana ESTs have been deposited in public databases, producing the largest collection of ESTs for any plant species. We describe here the application of a method of reducing redundancy and increasing information content in this collection by grouping overlapping ESTs representing the same gene into a "contig" or assembly. The increased information content of these assemblies allows more putative identifications to be assigned based on the results of similarity searches with nucleotide and protein databases. The results of this analysis indicate that sequence information is available for approximately 12,600 nonoverlapping ESTs from Arabidopsis. Comparison of the assemblies with 953 Arabidopsis coding sequences indicates that up to 57% of all Arabidopsis genes are represented by an EST. Clustering analysis of these sequences suggests that between 300 and 700 gene families are represented by between 700 and 2000 sequences in the EST database. A database of the assembled sequences, their putative identifications, and cellular roles is available through the World Wide Web.


Subject(s)
Arabidopsis/genetics , DNA, Complementary/chemistry , DNA, Plant/chemistry , Databases, Factual , Genes, Plant , Base Sequence , Computer Communication Networks , Molecular Sequence Data , Multigene Family , Sequence Tagged Sites , Software
5.
Science ; 273(5278): 1058-73, 1996 Aug 23.
Article in English | MEDLINE | ID: mdl-8688087

ABSTRACT

The complete 1.66-megabase pair genome sequence of an autotrophic archaeon, Methanococcus jannaschii, and its 58- and 16-kilobase pair extrachromosomal elements have been determined by whole-genome random sequencing. A total of 1738 predicted protein-coding genes were identified; however, only a minority of these (38 percent) could be assigned a putative cellular role with high confidence. Although the majority of genes related to energy production, cell division, and metabolism in M. jannaschii are most similar to those found in Bacteria, most of the genes involved in transcription, translation, and replication in M. jannaschii are more similar to those found in Eukaryotes.


Subject(s)
Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Methanococcus/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Base Composition , Base Sequence , Biological Transport/genetics , Carbon Dioxide/metabolism , Chromosome Mapping , Chromosomes, Bacterial/genetics , DNA Replication , Databases, Factual , Energy Metabolism/genetics , Genes, Bacterial , Hydrogen/metabolism , Methane/metabolism , Methanococcus/physiology , Molecular Sequence Data , Protein Biosynthesis , Sequence Analysis, DNA , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 92(18): 8303-7, 1995 Aug 29.
Article in English | MEDLINE | ID: mdl-7667285

ABSTRACT

Nerve growth factor-induced differentiation of adrenal chromaffin PC-12 cells to a neuronal phenotype involves alterations in gene expression and represents a model system to study neuronal differentiation. We have used the expressed-sequence-tag approach to identify approximately 600 differentially expressed mRNAs in untreated and nerve growth factor-treated PC-12 cells that encode proteins with diverse structural and biochemical functions. Many of these mRNAs encode proteins belonging to cellular pathways not previously known to be regulated by nerve growth factor. Comparative expressed-sequence-tag analysis provides a basis for surveying global changes in gene-expression patterns in response to biological signals at an unprecedented scale, is a powerful tool for identifying potential interactions between different cellular pathways, and allows the gene-expression profiles of individual genes belonging to a particular pathway to be followed.


Subject(s)
Gene Expression Regulation/drug effects , Nerve Growth Factors/pharmacology , Sequence Tagged Sites , Animals , Cell Differentiation/drug effects , DNA, Complementary , Humans , Molecular Sequence Data , PC12 Cells , RNA, Messenger/genetics , Rats
7.
Genomics ; 12(3): 492-6, 1992 Mar.
Article in English | MEDLINE | ID: mdl-1559700

ABSTRACT

Expressed sequence tags (ESTs) have been obtained from several hundred brain cDNAs as an initial effort to characterize expressed brain genes. These ESTs will become tools for human genome mapping and they will also provide candidate causative genes for inherited disorders affecting the central nervous system. We have developed a procedure for the rapid chromosomal assignment of these ESTs: cDNA sequences are first analyzed by a computer program to determine regions likely not to be interrupted by introns in the genomic DNA. A pair of oligonucleotide primers is then designed to amplify this region by the polymerase chain reaction using DNA template from human-rodent somatic cell hybrid chromosomal panels. The chromosomal assignment of the cDNA is determined by studying the segregation of the amplified products in these panels. In this paper we describe the mapping of 46 brain ESTs, as well as observations on the amplification of rodent sequences.


Subject(s)
Brain/physiology , Chromosome Mapping , DNA/genetics , Sequence Tagged Sites , Animals , Base Sequence , Cricetinae , DNA/isolation & purification , Human Genome Project , Humans , Hybrid Cells/physiology , Mice , Molecular Sequence Data , Oligodeoxyribonucleotides , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...