Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 588(7838): 424-428, 2020 12.
Article in English | MEDLINE | ID: mdl-33328663

ABSTRACT

Exotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material1-3. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material4-9. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components1,10-15. Here we use this designer approach to fabricate van der Waals heterostructures that combine a two-dimensional (2D) ferromagnet with a superconductor, and we observe 2D topological superconductivity in the system. We use molecular-beam epitaxy to grow 2D islands of ferromagnetic chromium tribromide16 on superconducting niobium diselenide. We then use low-temperature scanning tunnelling microscopy and spectroscopy to reveal the signatures of one-dimensional Majorana edge modes. The fabricated 2D van der Waals heterostructure provides a high-quality, tunable system that can be readily integrated into device structures that use topological superconductivity. The layered heterostructures can be readily accessed by various external stimuli, potentially allowing external control of 2D topological superconductivity through electrical17, mechanical18, chemical19 or optical means20.

2.
J Phys Condens Matter ; 32(23): 235501, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32079006

ABSTRACT

We study in-gap states of a single magnetic impurity embedded in a honeycomb monolayer which is deposited on superconducting substrate. The intrinsic spin-orbit coupling induces the quantum spin Hall insulating (QSHI) phase gapped around the Fermi energy. Under such circumstances we consider the emergence of Shiba-like bound states driven by the superconducting proximity effect. We investigate their topography, spin-polarization and signatures of the quantum phase transition manifested by reversal of the local currents circulating around the magnetic impurity. These phenomena might be important for more exotic in-gap quasiparticles in such complex nanostructures as magnetic nanowires or islands, where the spin-orbit interaction along with the proximity induced electron pairing give rise to topological phases hosting the protected boundary modes.

3.
Beilstein J Nanotechnol ; 9: 1370-1380, 2018.
Article in English | MEDLINE | ID: mdl-29977671

ABSTRACT

We investigate single and multiple defects embedded in a superconducting host, studying the interplay between the proximity-induced pairing and interactions. We explore the influence of the spin-orbit coupling on energies, polarization and spatial patterns of the bound (Yu-Shiba-Rusinov) states of magnetic impurities in a two-dimensional square lattice. We also address the peculiar bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization that has been recently reported by S. Jeon et al. (Science2017,358, 772). Finally, we study leakage of these polarized Majorana quasiparticles into side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet-doublet phase transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...