Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1384-1398, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36322421

ABSTRACT

This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SßαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SßαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SßαR motif, was first determined to 2.19 Šresolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Šresolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.


Subject(s)
Bacteriophages , DNA Polymerase I , DNA Polymerase I/chemistry , DNA Polymerase I/genetics , Phosphodiesterase I , Thermus , Taq Polymerase/chemistry , Escherichia coli
2.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Article in English | MEDLINE | ID: mdl-34114607

ABSTRACT

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Subject(s)
Genome, Viral/genetics , Metagenomics , Bioprospecting/organization & administration , Computational Biology , Databases, Genetic , Europe , Hydrothermal Vents/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virome/genetics , Viruses/classification , Viruses/genetics
3.
Molecules ; 23(6)2018 06 19.
Article in English | MEDLINE | ID: mdl-29921766

ABSTRACT

A new ecdysteroid, ponasterone F (1) and the previously reported compound ponasterone A (2) were isolated from specimens of the Arctic marine bryozoan Alcyonidium gelatinosum collected at Hopenbanken, off the coast of Edgeøya, Svalbard. The structure of 1 was elucidated, and the structure of 2 confirmed by spectroscopic methods including 1D and 2D NMR and analysis of HR-MS data. The compounds were evaluated for their ability to affect bacterial survival and cell viability, as well as their agonistic activities towards the estrogen receptors α and ß. The compounds were not active in these assays. Compound 2 is an arthropod hormone controlling molting and are known to act as an allelochemical when produced by plants. Even though its structure has been previously reported, this is the first time a ponasterone has been isolated from a bryozoan. A. gelatinosum produced 1 and 2 in concentrations surpassing those expected of hormonal molecules, indicating their function as defence molecules against molting predators. This work adds to the chemical diversity reported from marine bryozoans and expanded our knowledge of the chemical modifications of the ponasterones.


Subject(s)
Anti-Bacterial Agents , Aquatic Organisms/chemistry , Bacteria/growth & development , Bryozoa/chemistry , Ecdysterone/analogs & derivatives , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Arctic Regions , Ecdysterone/chemistry , Ecdysterone/isolation & purification , Ecdysterone/pharmacology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...