Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hematol ; 102(11): 3217-3227, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37726493

ABSTRACT

Many sickle cell disease (SCD) patients lack matched family donors (MFD) or matched unrelated donors (MUD), implying haploidentical donors (MMFD) as a logical donor choice. We used a reduced toxicity protocol for all donor types. We included 31 patients (2-22 years) with MFD (n = 15), MMFD (10), or MUD (6) HSCT and conditioning with alemtuzumab/ATG, thiotepa, fludarabine and treosulfan, and post-transplant cyclophosphamide for MMFD. After the initial six patients, treosulfan was replaced by targeted busulfan (AUC 65-75 ng*h/ml). After a median follow-up of 26 months (6-123), all patients are alive and off immunosuppression. Two MMFD patients experienced secondary graft failure with recurrence of SCD, both after treosulfan conditioning. Neither acute GVHD ≥ °III nor moderate/severe chronic GVHD was observed. The disease-free, severe GVHD-free survival was 100%, 100%, and 80% in the MFD, MUD, and MMFD groups, respectively (p = 0.106). There was a higher rate of virus reactivation in MMFD (100%) and MUD (83%) compared to MFD (40%; p = 0.005), but not of viral disease (20% vs 33% vs 13%; p = 0.576). Six patients had treosulfan-based conditioning, two of whom experienced graft failure (33%), compared to 0/25 (0%) after busulfan-based conditioning (p = 0.032). Donor chimerism was ≥ 80% in 28/31 patients (90%) at last follow-up. Reduced toxicity myeloablative conditioning resulted in excellent overall survival, negligible GVHD, and low toxicity among all donor groups in pediatric and young adult patients with SCD.

2.
PLoS One ; 8(12): e80045, 2013.
Article in English | MEDLINE | ID: mdl-24312453

ABSTRACT

HIV evades CD8 T cell mediated pressure by viral escape mutations in targeted CD8 T cell epitopes. A viral escape mutation can lead to a decline of the respective CD8 T cell response. Our question was what happened after the decline of a CD8 T cell response and - in the case of viral escape - if a new CD8 T cell response towards the mutated antigen could be generated in a population not selected for certain HLA alleles. We studied 19 antiretroviral-naïve HIV-1 infected individuals with different disease courses longitudinally. A median number of 12 (range 2-24) CD8 T cell responses towards Gag and Nef were detected per study subject. A total of 30 declining CD8 T cell responses were studied in detail and viral sequence analyses showed amino acid changes in 25 (83%) of these. Peptide titration assays and definition of optimal CD8 T cell epitopes revealed 12 viral escape mutations with one de-novo response (8%). The de-novo response, however, showed less effector functions than the original CD8 T cell response. In addition we identified 4 shifts in immunodominance. For one further shift in immunodominance, the mutations occurred outside the optimal epitope and might represent processing changes. Interestingly, four adaptations to the virus (the de-novo response and 3 shifts in immunodominance) occurred in the group of chronically infected progressors. None of the subjects with adaptation to the changing virus carried the HLA alleles B57, B*58:01 or B27. Our results show that CD8 T cell responses adapt to the mutations of HIV. However it was limited to only 20% (5 out of 25) of the epitopes with viral sequence changes in a cohort not expressing protective HLA alleles.


Subject(s)
Alleles , CD8-Positive T-Lymphocytes/immunology , HIV Infections , HIV-1 , HLA-B Antigens , Immunity, Cellular/genetics , Adult , CD8-Positive T-Lymphocytes/pathology , Cohort Studies , Female , Gene Products, gag/genetics , Gene Products, gag/immunology , HIV Infections/genetics , HIV Infections/immunology , HIV-1/genetics , HIV-1/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , Humans , Male , Middle Aged , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...