Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6943, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117271

ABSTRACT

The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.


Subject(s)
Coxiellaceae , Rickettsia , Spiders , Animals , Spiders/microbiology , Symbiosis , Host Specificity , Drosophila
2.
Sci Rep ; 12(1): 14745, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042361

ABSTRACT

Exposure to numerous chemicals disrupts the spiders' locomotion. Spiders, particularly epigeic spiders, are dependent on their locomotory activities to search for prey, hide from their enemies, and perform sexual reproduction and subsequent parental care. Among the best-known compounds that inhibit the locomotion of arthropods are neonicotinoids. Despite spiders are less affected by the neonicotinoids than insects due to the sequence differences in their acetylcholine receptors, they are not resistant to these compounds. We hypothesized that acute exposure to a broad spectrum of neonicotinoids suppresses the traveled distance, mean velocity, and maximum velocity in epigeic spiders. As a model species, we used adults of Pardosa lugubris. We tested commercial formulations of thiamethoxam, acetamiprid, and thiacloprid. We tested each of the neonicotinoids in the maximum and minimum concentrations recommended for foliar applications. We applied them under controlled conditions dorsally by spraying them directly on the spiders or exposing the spiders to the tarsal contact with neonicotinoid residues. Control groups consisted of 31 individuals; treated groups consisted of 10-21 individuals. We found that a broad spectrum of neonicotinoids temporarily suppresses the traveled distance in epigeic spiders. At 1 h after application, all the three tested neonicotinoid insecticides induced declines in the traveled distance, but this effect mostly disappeared when tested at 24 h after the application. The decrease in the traveled distance was associated with substantial temporary decreases in the mean and maximum velocities. Despite differences among modalities, all three insecticides caused multiple adverse effects on the locomotory parameters in any tested concentrations. It remains to test what would be the lowest safe concentration for the chronic exposure to neonicotinoids in epigeic spiders.


Subject(s)
Insecticides , Spiders , Animals , Insecticides/toxicity , Locomotion , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Thiamethoxam/pharmacology
3.
PLoS One ; 17(7): e0261695, 2022.
Article in English | MEDLINE | ID: mdl-35797267

ABSTRACT

The mygalomorph spiders of the family Atypidae are among the most archaic spiders. The genus Atypus Latreille, 1804 occurs in Eurasia and northern Africa, with a single enigmatic species, Atypus snetsingeri Sarno, 1973, known only from a small area in southeastern Pennsylvania in eastern USA. A close relationship to European species could be assumed based on geographic proximity, but A. snetsingeri more closely resembled Asian species. This study was undertaken to learn more about the genetics of A. snetsingeri, its habitat requirements and natural history. Molecular markers (CO1 sequences) were compared to available data for other atypids and showed that A. snetsingeri is identical with A. karschi Dönitz, 1887 native to East Asia. Natural history parameters in Pennsylvania were also similar in every respect to A. karschi in Japan, therefore, we propose that the spider is an introduced species and the specific epithet snetsingeri is relegated to a junior synonym of A. karschi. Cytogenetic analysis showed an X0 sex chromosome system (42 chromosomes in females, 41 in males) and we also detected nucleolus organizing regions and heterochromatin, the latter for the first time in the Atypoidea. In Pennsylvania the spider is found in a variety of habitats, from forests to suburban shrubbery, where the above-ground webs are usually attached vertically to trees, shrubs, or walls, although other webs are oriented horizontally near the ground. Prey include millipedes, snails, woodlice, carabid beetles and earthworms. Atypus karschi is the first known case of an introduced purse-web spider. It is rarely noticed but well-established within its range in southeastern Pennsylvania.


Subject(s)
Spiders , Animals , Ecosystem , Female , Forests , Male , Pennsylvania , Sex Chromosomes , Spiders/genetics
4.
J Econ Entomol ; 115(5): 1472-1479, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35674716

ABSTRACT

The northern yellow sac spider Cheiracanthium mildei L. Koch, is expanding its range to Central Europe, especially to synanthropic habitats. The spiders become unwanted companions because of the unreasonable fear - arachnophobia, and estetic reason - silk retreats in corners, capturing dust. The most commonly used substances against spiders are pesticides, which are, however, toxic. In our work we tested the attraction or repellence of 15 essential oils (EO) from plants representing eight families to C. mildei. Our research has shown a significant repellent effect of EO from three plants, namely Syzygium aromaticum (L.) Merr. et L. M. Perry (Myrtales: Myrtaceae), Ananas comosus (L.) Merr. (Poales: Bromeliaceae) and Musa sp. (L.) (Zingiberales: Musaceae). In contrast, some EOs appeared to have an attraction effect, particularly Carum carvi L. (Apiales: Apiaceae). Zingiber officinale Roscoe (Zingiberales: Zingiberaceae) reduced the tendency of spiders to construct the silken retreat. S. aromaticum, A. sativus, Musa sp. and Z. officinale have the potential to be used as natural repellents against spiders.


Subject(s)
Insect Repellents , Musa , Oils, Volatile , Spiders , Animals , Dust , Insect Repellents/pharmacology , Oils, Volatile/pharmacology , Phobic Disorders , Plant Oils/pharmacology , Plants , Silk
5.
Sci Rep ; 11(1): 8496, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875743

ABSTRACT

Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of ß-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.


Subject(s)
Drosophila melanogaster/physiology , Insecticides/toxicity , Neonicotinoids/toxicity , Nutritional Status , Spiders/physiology , Toxicity Tests/methods , Animals , Arthropod Proteins/metabolism , Body Weight , Drosophila melanogaster/drug effects , Lipids/analysis , Spiders/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...