Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(1): 229-36, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21075898

ABSTRACT

Bacteriophage MS2 is widely used as a surrogate to estimate pathogenic virus elimination by membrane filtration processes used in water treatment. Given that this water technology may be conducted with different types of waters, we focused on investigating the effects of ionic strength on MS2 behavior. For this, MS2 was analyzed while suspended in solutions of various ionic strengths, first in a batch experiment and second during membrane ultrafiltration, and quantified using (i) quantitative reverse transcriptase PCR (qRT-PCR), which detects the total number of viral genomes, (ii) qRT-PCR without the RNA extraction step, which reflects only particles with a broken capsid (free RNA), and (iii) the PFU method, which detects only infectious viruses. At the beginning of the batch experiments using solutions containing small amounts of salts, losses of MS2 infectivity (90%) and broken particles (20%) were observed; these proportions did not change during filtration. In contrast, in high-ionic-strength solutions, bacteriophage kept its biological activity under static conditions, but it quickly lost its infectivity during the filtration process. Increasing the ionic strength decreased both the inactivation and the capsid breakup in the feed suspension and increased the loss of infectivity in the filtration retentate, while the numbers of MS2 genomes were identical in both experiments. In conclusion, the effects of ionic strength on MS2 behavior may significantly distort the results of membrane filtration processes, and therefore, the combination of classical and molecular methods used here is useful for an effective validation of the retention efficiency of ultrafiltration membranes.


Subject(s)
Levivirus/drug effects , Levivirus/isolation & purification , Membranes , Microbial Viability/drug effects , Osmolar Concentration , Water Microbiology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Ultrafiltration/methods , Viral Plaque Assay
2.
J Bacteriol ; 192(6): 1487-97, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20081036

ABSTRACT

Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, is known for its ability to catabolize a wide range of plant compounds. This ability is correlated with the presence of specific carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) devoted to scavenging specific carbohydrates. In this study, we demonstrate that there is an X. campestris pv. campestris CUT system involved in the import and catabolism of N-acetylglucosamine (GlcNAc). Expression of genes belonging to this GlcNAc CUT system is under the control of GlcNAc via the LacI family NagR and GntR family NagQ regulators. Analysis of the NagR and NagQ regulons confirmed that GlcNAc utilization involves NagA and NagB-II enzymes responsible for the conversion of GlcNAc-6-phosphate to fructose-6-phosphate. Mutants with mutations in the corresponding genes are sensitive to GlcNAc, as previously reported for Escherichia coli. This GlcNAc sensitivity and analysis of the NagQ and NagR regulons were used to dissect the X. campestris pv. campestris GlcNAc utilization pathway. This analysis revealed specific features, including the fact that uptake of GlcNAc through the inner membrane occurs via a major facilitator superfamily transporter and the fact that this amino sugar is phosphorylated by two proteins belonging to the glucokinase family, NagK-IIA and NagK-IIB. However, NagK-IIA seems to play a more important role in GlcNAc utilization than NagK-IIB under our experimental conditions. The X. campestris pv. campestris GlcNAc NagR regulon includes four genes encoding TonB-dependent active transporters (TBDTs). However, the results of transport experiments suggest that GlcNAc passively diffuses through the bacterial envelope, an observation that calls into question whether GlcNAc is a natural substrate for these TBDTs and consequently is the source of GlcNAc for this nonchitinolytic plant-associated bacterium.


Subject(s)
Acetylglucosamine/metabolism , Gene Expression Regulation, Bacterial/physiology , Xanthomonas campestris/metabolism , Bacterial Proteins/metabolism , Biological Transport, Active , Carbon/metabolism , Carrier Proteins/metabolism , Chitin/metabolism , Disaccharides/metabolism , Mutation , Nitrogen/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL