Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 72018 03 22.
Article in English | MEDLINE | ID: mdl-29565246

ABSTRACT

Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness) and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy.


Subject(s)
Alligators and Crocodiles/physiology , Heart Conduction System/physiology , Heart Rate/physiology , Heart/physiology , Alligators and Crocodiles/embryology , Alligators and Crocodiles/genetics , Animals , Bundle of His/embryology , Bundle of His/metabolism , Bundle of His/physiology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Heart/embryology , Heart Conduction System/embryology , Heart Rate/genetics , Heart Ventricles/embryology , Heart Ventricles/metabolism , In Situ Hybridization , Models, Cardiovascular , Purkinje Fibers/embryology , Purkinje Fibers/metabolism , Purkinje Fibers/physiology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Ventricular Septum/embryology , Ventricular Septum/metabolism , Ventricular Septum/physiology
2.
Sci Rep ; 8(1): 2921, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440763

ABSTRACT

Fluorescence optical imaging techniques have revolutionized the field of cardiac electrophysiology and advanced our understanding of complex electrical activities such as arrhythmias. However, traditional monocular optical mapping systems, despite having high spatial resolution, are restricted to a two-dimensional (2D) field of view. Consequently, tracking complex three-dimensional (3D) electrical waves such as during ventricular fibrillation is challenging as the waves rapidly move in and out of the field of view. This problem has been solved by panoramic imaging which uses multiple cameras to measure the electrical activity from the entire epicardial surface. However, the diverse engineering skill set and substantial resource cost required to design and implement this solution have made it largely inaccessible to the biomedical research community at large. To address this barrier to entry, we present an open source toolkit for building panoramic optical mapping systems which includes the 3D printing of perfusion and imaging hardware, as well as software for data processing and analysis. In this paper, we describe the toolkit and demonstrate it on different mammalian hearts: mouse, rat, and rabbit.


Subject(s)
Heart/diagnostic imaging , Optical Imaging/methods , Software , Animals , Imaging, Three-Dimensional , Mice , Rabbits , Rats
3.
Article in English | MEDLINE | ID: mdl-28804678

ABSTRACT

Advanced capabilities in electrical recording are essential for the treatment of heart-rhythm diseases. The most advanced technologies use flexible integrated electronics; however, the penetration of biological fluids into the underlying electronics and any ensuing electrochemical reactions pose significant safety risks. Here, we show that an ultrathin, leakage-free, biocompatible dielectric layer can completely seal an underlying layer of flexible electronics while allowing for electrophysiological measurements through capacitive coupling between tissue and the electronics, and thus without the need for direct metal contact. The resulting current-leakage levels and operational lifetimes are, respectively, four orders of magnitude smaller and between two and three orders of magnitude longer than those of any other flexible-electronics technology. Systematic electrophysiological studies with normal, paced and arrhythmic conditions in Langendorff hearts highlight the capabilities of the capacitive-coupling approach. Our technology provides a realistic pathway towards the broad applicability of biocompatible, flexible electronic implants.

4.
Am J Physiol Heart Circ Physiol ; 305(11): H1569-73, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24043254

ABSTRACT

Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.


Subject(s)
Computer-Aided Design , Heart/anatomy & histology , Imaging, Three-Dimensional , Laboratories , Physiology/methods , Printing/methods , Animals , Equipment Design , Humans , Physiology/instrumentation , Printing/instrumentation , Species Specificity
5.
Heart Rhythm ; 8(2): 295-303, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21034854

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. OBJECTIVE: The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. METHODS: RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RESULTS: RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. CONCLUSION: MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging.


Subject(s)
Catheter Ablation/methods , Heart Atria/pathology , Heart Atria/surgery , Magnetic Resonance Imaging/methods , Radiographic Image Enhancement , Animals , Disease Models, Animal , Female , Gadolinium , Radiography, Interventional/methods , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...