Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(12): 8493-507, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24474690

ABSTRACT

Targeting effector molecules to tumor cells is a promising mode of action for cancer therapy and diagnostics. Binding proteins with high affinity and specificity for a tumor target that carry effector molecules such as toxins, cytokines, or radiolabels to their intended site of action are required for these applications. In order to yield high tumor accumulation while maintaining low levels in healthy tissues and blood, the half-life of such conjugates needs to be in an optimal range. Scaffold-based binding molecules are small proteins with high affinity and short systemic circulation. Due to their low molecular complexity, they are well suited for combination with effector molecules as well as half-life extension technologies yielding therapeutics with half-lives adapted to the specific therapy. We have identified ubiquitin as an ideal scaffold protein due to its outstanding biophysical and biochemical properties. Based on a dimeric ubiquitin library, high affinity and specific binding molecules, so-called Affilin® molecules, have been selected against the extradomain B of fibronectin, a target almost exclusively expressed in tumor tissues. Extradomain B-binding molecules feature high thermal and serum stability as well as strong in vitro target binding and in vivo tumor accumulation. Application of several half-life extension technologies results in molecules of largely unaffected affinity but significantly prolonged in vivo half-life and tumor retention. Our results demonstrate the utility of ubiquitin as a scaffold for the generation of high affinity binders in a modular fashion, which can be combined with effector molecules and half-life extension technologies.


Subject(s)
Fibronectins/metabolism , Neoplasms/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Humans , Mice , Models, Molecular , Peptide Library , Protein Binding , Protein Engineering , Protein Structure, Tertiary , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin/pharmacokinetics
2.
Protein Expr Purif ; 72(2): 238-43, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20363332

ABSTRACT

Tumor necrosis factor (TNF-alpha) inhibitors, used for the treatment of common inflammatory diseases, currently belong among the most important biotechnologically produced pharmaceuticals. So far four TNF-alpha antagonists have been approved by regulatory authorities for defined subsets of applications. Furthermore, numerous approaches are being taken to develop new protein-based pharmaceuticals and to broaden their application areas in the treatment of TNF-alpha -related diseases. Both the fundamental understanding of disease-related TNF-alpha activity and the subsequent development of corresponding drug candidates demand the availability of large amounts of TNF-alpha as a bioactive protein. We have therefore established a protocol for the rapid high-level synthesis of recombinant human TNF-alpha in Escherichia coli shake-flask cultures and the subsequent purification of the mature protein. Using the advantages of SUMO-fusion technology we were able to produce protein with an authentic N-terminus in high yield. Two immobilized metal ion-affinity chromatography steps with a protease cleavage step in between and subsequent size-exclusion chromatography were utilized to purify the protein. The protein was obtained from the last chromatography step as a trimer, while purity was at least 96% as estimated by SDS-PAGE. The identity of the protein was confirmed by MALDI-TOF mass spectrometry. Recombinant mature TNF-alpha was correctly folded as assessed by CD spectroscopy and its biological activity was confirmed by an L929 cell assay.


Subject(s)
Cell Culture Techniques/methods , Recombinant Fusion Proteins/biosynthesis , SUMO-1 Protein/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Cell Death/drug effects , Cell Line, Tumor , Chromatography, Affinity/methods , Chromatography, Gel , Chromatography, High Pressure Liquid , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Humans , Mice , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , SUMO-1 Protein/genetics , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...