Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21124, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273568

ABSTRACT

The present study concerned the effect of ageing in laying hens, from 23 to 90 weeks of age, on the regulation of Ca metabolism related to the requirement for eggshell mineralization. Samples were collected from parathyroid gland (PG), liver, jejunum, medullary bone (MB) and kidney for a quantitative study of candidate gene expression. Although parathyroid hormone (PTH) gene expression in the PG did not vary with age, a stronger challenge to Ca homeostasis was suggested in aged hens. Indeed gene expression of Ca transporters , Vitamin D Receptor (VDR) in the jejunum, and that of transient receptor potential channel subfamily V member 5 (TRPV5) in the kidney decreased. This could exacerbate bone resorption and impair bone accretion, as attested by a higher expression of the Carbonic Anhydrase 2 (CA2) gene and a lower expression of collagen type I alpha 1 chain (COL1A1) in the MB. The increased expression of Fibroblast Growth Factor 23 (FGF23) in the MB likely contributed to the decreased plasma levels of 1.25(OH)2D3 and the altered expression of target genes under its regulation. Our data highlights the molecular mechanisms underlying the osteoporotic syndrome previously documented in aged laying hens, thus providing new perspectives for future interventions.


Subject(s)
Aging/physiology , Calcium/metabolism , Fibroblast Growth Factors/metabolism , Phosphorus/metabolism , Animals , Calcitriol/metabolism , Chickens/metabolism , Female , Fibroblast Growth Factor-23 , Gene Expression Regulation , Jejunum/metabolism , Kidney/metabolism , Signal Transduction
2.
Domest Anim Endocrinol ; 72: 106407, 2020 07.
Article in English | MEDLINE | ID: mdl-32006872

ABSTRACT

This study provides an integrative description of candidate gene expression across tissues involved in calcium (Ca) metabolism during the egg laying cycle, using the well-defined model of Ca supply as fine or coarse particles of calcium carbonate (CaCO3). Plasma and tissue samples were collected from hens at the peak of laying at 0 to 1, 9 to 10, and 18 to 19 h postovulation (PO). After mRNA preparation from the parathyroid gland, medullary bone, liver, kidney, duodenum, and jejunum, gene expressions were quantified using RT-qPCR. The highest levels of parathyroid hormone (PTH) mRNA in the parathyroid gland (P < 0.05), and of the active form of vitamin D3 1.25(OH)2D3 in the plasma (P < 0.01) were observed at 18 to 19 h PO. During this active phase of eggshell formation, bone resorption was attested to high levels of plasma inorganic phosphorus (iP) and the receptor activation of nuclear factor-κB expression in the bone (P < 0.001 and P < 0.05, respectively). At this stage, 5 genes of the transcellular and the paracellular Ca absorption pathways in the intestine (P < 0.05) and the Ca channel transient receptor potential cation channel subfamily V member 5 (P < 0.05), involved in its reabsorption in the kidney, were overexpressed. At 0 to 1 h PO during the subsequent daylight period, 2 candidates of the transcellular and the paracellular Ca pathways (P < 0.05) remained at high levels in the intestine, while calbindin D 28K expression was the highest in the kidney (P < 0.05). As PTH mRNA and 1.25(OH)2D3 were low, bone accretion was likely active at this stage. The phosphaturic hormone fibroblast growth factor 23 (FGF23) was overexpressed at 18 to 19 h PO (P < 0.05) in the bone when plasma iP was high, which suggested a role in the subsequent reduction of P reabsorption in the kidney, as attested to the decreased expression of P cotransporters, leading to iP clearance from the plasma at 0 to 1 h PO (P < 0.05). The low levels of 1.25(OH)2D3 at this stage coincided with increased expression of the 24-hydroxylase gene in the kidney (P < 0.05). In hens fed fine particles of CaCO3, higher plasma levels of 1,25(OH)2D3 and higher expression of several genes involved in bone turnover reflected a stronger challenge to Ca homeostasis. Altogether, these data support the hypothesis that FGF23 could drive vitamin D metabolism in the laying hen, as previously documented in other species and explain the tight link between P and Ca metabolisms.


Subject(s)
Calcium/metabolism , Chickens , Cholecalciferol/metabolism , Fibroblast Growth Factors/metabolism , Parathyroid Hormone/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Calcium Carbonate/administration & dosage , Cholecalciferol/blood , Diet/veterinary , Female , Fibroblast Growth Factors/blood , Oviposition
3.
Poult Sci ; 98(11): 6005-6018, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31328776

ABSTRACT

To meet the high calcium (Ca) demand during eggshell biomineralization (2 g of Ca per egg), laying hens develop specific metabolic regulations to maintain Ca homeostasis. The intake of Ca, its solubilization, and absorption capacity are enhanced at sexual maturity (SM). A better knowledge of the intestinal Ca transporters involved in their variations at this stage could indicate new nutritional strategies to enhance Ca digestive utilization. Transcellular Ca absorption pathway and its major player calbindin-D 28 K (CALB1) mediate a saturable transport, which has been extensively described in this model. Conversely, a contribution by the paracellular pathway involving non-saturable Ca transport through intercellular tight junction has also been suggested. The aim of the present study was to identify candidate genes of these two pathways and their patterns of expression, in immature pullets (12, 15, and 17 wk old) and mature laying hens (23 wk old) in the duodenum, jejunum, and ileum. Using RT-qPCR, this study identifies 3 new candidate genes for transcellular, and 9 for paracellular Ca transport. A total of 5 candidates of the transcellular pathway, transient receptor potential cation channels subfamily C member 1 (TRPC1) and M member 7 (TRPM7); CALB1 and ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) and ATPase plasma membrane Ca2+ transporting 2 (ATP2B2) were enhanced with age or after SM in the duodenum, the jejunum or all 3 segments. A total of 4 candidates of the paracellular pathway Claudin 2 (CLDN2) and tight junction proteins 1, 2, and 3 (TJP1, TJP2 and TJP3) increased in the small intestine after SM. Additionally, CALB1, ATP2B2, and CLDN2 were overexpressed in the duodenum or the jejunum or both segments after SM. The enhanced expression of candidate genes of the paracellular Ca pathway after SM, supports that the non-saturable transport could be a mechanism of great importance when high concentrations of soluble Ca are observed in the intestinal content during eggshell formation. Both pathways may work cooperatively in the duodenum and jejunum, the main sites of Ca absorption in laying hens.


Subject(s)
Avian Proteins/genetics , Calcium, Dietary/metabolism , Chickens/physiology , Animals , Avian Proteins/metabolism , Chickens/genetics , Female , Intestinal Absorption/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...