Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 170: 112176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820995

ABSTRACT

This study aimed to determine how fatigue affects factors associated with injury, neuromuscular activity, and control in recreational runners. Previously identified injury risk factors were defined as peak vertical instantaneous loading rates (pVILR) for tibial stress fracture (TSF) and peak hip adduction (pHADD) for patellofemoral pain syndrome and iliotibial band syndrome. Kinematics, kinetics, and electromyography data were collected from 11 recreational runners throughout a fatiguing run. Three trials were collected in the first and final minutes of the run. Coactivation was quantified about the knee and ankle for the entire stance phase and anticipatory, weight acceptance (WA), and propulsion sub-phases of stance. Trunk control was quantified by the peak mediolateral lean, peak forward lean, and flexion range of motion (ROM). There were significant increases in pHADD and pVILR when fatigued. Significant decreases in coactivation around the knee were found over the entire stance phase, in the anticipatory phase, and WA phase. Coactivation decreased about the ankle during WA. Lateral trunk lean significantly increased when fatigued, but no significant changes were found in flexion ROM or lean. Mediation analyses showed changes in ankle coactivation during WA, and lateral trunk lean are significant influences on pVILR, a measure associated with TSF. Fatigue-induced adaptations of decreasing ankle coactivation during WA and increased lateral trunk lean may increase the likelihood of TSF. In this study, a fatiguing run influenced changes in control in recreational runners. Further investigation of causal fatigue-induced injuries is necessary to better understand the effects of coactivation and trunk control.


Subject(s)
Running , Humans , Running/physiology , Running/injuries , Male , Adult , Female , Biomechanical Phenomena , Torso/physiopathology , Range of Motion, Articular/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiopathology , Electromyography , Ankle Joint/physiopathology , Young Adult , Knee Joint/physiopathology
2.
Trials ; 24(1): 564, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658464

ABSTRACT

BACKGROUND: Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through neurologic dance training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. METHODS: In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1-month follow-up, and 6-month follow-up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. DISCUSSION: The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. TRIAL REGISTRATION: This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cancer Survivors , Dancing , Female , Humans , Breast Neoplasms/drug therapy , Prospective Studies , Quality of Life , Survivors , Randomized Controlled Trials as Topic
3.
Res Sq ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37461666

ABSTRACT

Background Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through Neurologic Dance Training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. Methods In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1mo follow up, and 6mo follow up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. Discussion The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. Trial Registration This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.

4.
PLoS One ; 17(7): e0270335, 2022.
Article in English | MEDLINE | ID: mdl-35797373

ABSTRACT

Breathing plays a vital role in everyday life, and specifically during exercise it provides working muscles with the oxygen necessary for optimal performance. Respiratory inductance plethysmography (RIP) monitors breathing through elastic belts around the chest and abdomen, with efficient breathing defined by synchronous chest and abdomen movement. This study examined if providing runners with visual feedback through RIP could increase breathing efficiency and thereby time to exhaustion. Thirteen recreational runners (8F, 5M) ran to exhaustion on an inclined treadmill on two days, with visual feedback provided on one randomly chosen day. Phase angle was calculated as a measure of thoraco-abdominal coordination. Time to exhaustion was not significantly increased when visual feedback was provided (p = 1). Phase angle was not significantly predicted by visual feedback (p = 0.667). Six participants improved phase angle when visual feedback was provided, four of whom increased time to exhaustion. Four participants improved phase angle by 9° or more, three of whom increased time to exhaustion. Participants who improved phase angle with visual feedback highlight that improving phase angle could increase time to exhaustion. Greater familiarization with breathing techniques and visual feedback and a different paradigm to induce running fatigue are needed to support future studies of breathing in runners.


Subject(s)
Feedback, Sensory , Running , Exercise Test , Humans , Plethysmography/methods , Respiration , Running/physiology
5.
J Biomech ; 116: 110217, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33422724

ABSTRACT

Despite the wide-spread use of musculoskeletal simulations and its use in estimating spinal loads, much is not known about how to best collect experimental data for modelling purposes. The primary purposes in this study were to determine the effects of tracking of running motion capture data to a model (1) with and without coupling of lumbar spine segments, and (2) with varying combinations of spinal markers. Running trials were collected from 7 participants, with each at three different speeds. The motion data was fit to the Full-Body Lumbar Spine Model (FBLS) with coupling of the lumbar spine enabled (CS) and disabled and therefore rigid (RS) in OpenSim through the Inverse Kinematics tool (IK). Different combinations of markers were chosen as tracking inputs for IK to represent experimental data collection with different marker sets. Root-mean-square (RMS) marker errors of all 13 markers along the spine for each gait cycle were calculated. The CS model resulted in 23.7% lower errors than the RS model (p < 0.001). The marker subset analysis showed that increasing the number of markers in the experimental data collection decreases the error, with the four marker tracking subsets with the highest number of markers tracked having the lowest errors. The location of the marker and timing in the gait cycle did not affect marker error. When spinal mechanics are of interest, the inclusion of a coupled lumbar spine in the model and a larger spinal marker set help better track experimental kinematics when fitting to a model.


Subject(s)
Running , Biomechanical Phenomena , Gait , Humans , Lumbar Vertebrae , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...