ABSTRACT
Studies of the electrophysiological response to acetylcholine (ACh) in mammalian outer hair cells (OHCs) are hindered by the presence of a large potassium current, I(K,n), most likely mediated by channels containing the KCNQ4 subunit. Since I(K,n) can be blocked by linopirdine, cholinergic effects might be better revealed in the presence of this compound. The aim of the present work was to study the effects of linopirdine on the ACh-evoked responses through alpha9alpha10-containing native and recombinant nicotinic cholinergic receptors. Responses to ACh were blocked by linopirdine in both OHCs and inner hair cells (IHCs) of rats at postnatal days 21-27 (OHCs) and 9-11 (IHCs). In addition, linopirdine blocked responses of recombinant alpha9alpha10 nicotinic cholinergic receptors (nAChRs) in a concentration-dependent manner with an IC(50) of 5.2 microM. Block by linopirdine was readily reversible, voltage independent, and surmountable at high concentrations of ACh, thus suggestive of a competitive type of interaction with the receptor. The present results contribute to the pharmacological characterization of alpha9alpha10-containing nicotinic receptors and indicate that linopirdine should be used with caution when analyzing the cholinergic sensitivity of cochlear hair cells.
Subject(s)
Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/physiology , Indoles/pharmacology , Potassium Channel Blockers/pharmacology , Protein Subunits/metabolism , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Acetylcholine/pharmacology , Animals , Gene Expression , Membrane Potentials/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Protein Subunits/genetics , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus laevisABSTRACT
In the mature cochlea, inner hair cells (IHCs) transduce acoustic signals into receptor potentials, communicating to the brain by synaptic contacts with afferent fibers. Before the onset of hearing, a transient efferent innervation is found on IHCs, mediated by a nicotinic cholinergic receptor that may contain both alpha9 and alpha10 subunits. Calcium influx through that receptor activates calcium-dependent (SK2-containing) potassium channels. This inhibitory synapse is thought to disappear after the onset of hearing [after postnatal day 12 (P12)]. We documented this developmental transition using whole-cell recordings from IHCs in apical turns of the rat organ of Corti. Acetylcholine elicited ionic currents in 88-100% of IHCs between P3 and P14, but in only 1 of 11 IHCs at P16-P22. Potassium depolarization of efferent terminals caused IPSCs in 67% of IHCs at P3, in 100% at P7-P9, in 93% at P10-P12, but in only 40% at P13-P14 and in none of the IHCs tested between P16 and P22. Earlier work had shown by in situ hybridization that alpha9 mRNA is expressed in adult IHCs but that alpha10 mRNA disappears after the onset of hearing. In the present study, antibodies to alpha10 and to the associated calcium-dependent (SK2) potassium channel showed a similar developmental loss. The correlated expression of these gene products with functional innervation suggests that Alpha10 and SK2, but not Alpha9, are regulated by synaptic activity. Furthermore, this developmental knock-out of alpha10, but not alpha9, supports the hypothesis that functional nicotinic acetylcholine receptors in hair cells are heteromers containing both these subunits.