Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 12(11): e9439, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36398197

ABSTRACT

Bats emit echolocation calls to orientate in their predominantly dark environment. Recording of species-specific calls can facilitate species identification, especially when mist netting is not feasible. However, some taxa, such as Myotis bats can be hard to distinguish acoustically. In crowded situations where calls of many individuals overlap, the subtle differences between species are additionally attenuated. Here, we sought to noninvasively study the phenology of Myotis bats during autumn swarming at a prominent hibernaculum. To do so, we recorded sequences of overlapping echolocation calls (N = 564) during nights of high swarming activity and extracted spectral parameters (peak frequency, start frequency, spectral centroid) and linear frequency cepstral coefficients (LFCCs), which additionally encompass the timbre (vocal "color") of calls. We used this parameter combination in a stepwise discriminant function analysis (DFA) to classify the call sequences to species level. A set of previously identified call sequences of single flying Myotis daubentonii and Myotis nattereri, the most common species at our study site, functioned as a training set for the DFA. 90.2% of the call sequences could be assigned to either M. daubentonii or M. nattereri, indicating the predominantly swarming species at the time of recording. We verified our results by correctly classifying the second set of previously identified call sequences with an accuracy of 100%. In addition, our acoustic species classification corresponds well to the existing knowledge on swarming phenology at the hibernaculum. Moreover, we successfully classified call sequences from a different hibernaculum to species level and verified our classification results by capturing swarming bats while we recorded them. Our findings provide a proof of concept for a new noninvasive acoustic monitoring technique that analyses "swarming soundscapes" by combining classical acoustic parameters and LFCCs, instead of analyzing single calls. Our approach for species identification is especially beneficial in situations with multiple calling individuals, such as autumn swarming.

2.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468689

ABSTRACT

Bats host many viruses pathogenic to humans, and increasing evidence suggests that rotavirus A (RVA) also belongs to this list. Rotaviruses cause diarrheal disease in many mammals and birds, and their segmented genomes allow them to reassort and increase their genetic diversity. Eighteen out of 2,142 bat fecal samples (0.8%) collected from Europe, Central America, and Africa were PCR-positive for RVA, and 11 of those were fully characterized using viral metagenomics. Upon contrasting their genomes with publicly available data, at least 7 distinct bat RVA genotype constellations (GCs) were identified, which included evidence of reassortments and 6 novel genotypes. Some of these constellations are spread across the world, whereas others appear to be geographically restricted. Our analyses also suggest that several unusual human and equine RVA strains might be of bat RVA origin, based on their phylogenetic clustering, despite various levels of nucleotide sequence identities between them. Although SA11 is one of the most widely used reference strains for RVA research and forms the backbone of a reverse genetics system, its origin remained enigmatic. Remarkably, the majority of the genotypes of SA11-like strains were shared with Gabonese bat RVAs, suggesting a potential common origin. Overall, our findings suggest an underexplored genetic diversity of RVAs in bats, which is likely only the tip of the iceberg. Increasing contact between humans and bat wildlife will further increase the zoonosis risk, which warrants closer attention to these viruses.IMPORTANCE The increased research on bat coronaviruses after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) allowed the very rapid identification of SARS-CoV-2. This is an excellent example of the importance of knowing viruses harbored by wildlife in general, and bats in particular, for global preparedness against emerging viral pathogens. The current effort to characterize bat rotavirus strains from 3 continents sheds light on the vast genetic diversity of rotaviruses and also hints at a bat origin for several atypical rotaviruses in humans and animals, implying that zoonoses of bat rotaviruses might occur more frequently than currently realized.


Subject(s)
Chiroptera/virology , Rotavirus Infections/transmission , Rotavirus Infections/virology , Rotavirus/genetics , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/transmission , COVID-19/virology , Diarrhea/virology , Genetic Variation , Genome, Viral , Genotype , Horses , Humans , Metagenomics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , SARS-CoV-2/isolation & purification
3.
Ecol Evol ; 9(9): 5292-5308, 2019 May.
Article in English | MEDLINE | ID: mdl-31110680

ABSTRACT

Conservation genetics is important in the management of endangered species, helping to understand their connectivity and long-term viability, thus identifying populations of importance for conservation. The pond bat (Myotis dasycneme) is a rare species classified as "Near Threatened" with a wide but patchy Palearctic distribution. A total of 277 samples representing populations in Denmark, Germany, Latvia, Hungary, and Russia were used in the genetic analyses; 224 samples representing Denmark, Germany, and Russia were analyzed at 10 microsatellite loci; 241 samples representing all areas were analyzed using mitochondrial D-loop and cytochrome B sequences. A Bayesian clustering approach revealed two poorly resolved clusters, one representing the Danish and German groups and the other the Russian group. However, significantly different pairwise F ST and D EST estimates were observed between the Danish and German groups and between the Danish and Russian groups suggesting a recent population structure. These conflicting results might be attributed to the effect of migration or low resolution due to the number of microsatellite markers used. After concatenating the two mitochondrial sequences, analysis detected significant genetic differentiation between all populations, probably due to genetic drift combined with a founder event. The phylogenetic tree suggested a closer relationship between the Russian and Northern European populations compared to the Hungarian population, implying that the latter belongs to an older ancestral population. This was supported by the observed haplotype network and higher nucleotide diversity in this population. The genetic structuring observed in the Danish/German pond bat stresses the need for a cross-border management between the two countries. Further, the pronounced mtDNA structuring, together with the indicated migration between nearby populations suggest philopatric female behavior but male migration, emphasizes the importance of protecting suitable habitat mosaics to maintain a continuum of patches with dense pond bat populations across the species' distribution range.

4.
Sci Rep ; 8(1): 15177, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30310104

ABSTRACT

A 29 nucleotide deletion in open reading frame 8 (ORF8) is the most obvious genetic change in severe acute respiratory syndrome coronavirus (SARS-CoV) during its emergence in humans. In spite of intense study, it remains unclear whether the deletion actually reflects adaptation to humans. Here we engineered full, partially deleted (-29 nt), and fully deleted ORF8 into a SARS-CoV infectious cDNA clone, strain Frankfurt-1. Replication of the resulting viruses was compared in primate cell cultures as well as Rhinolophus bat cells made permissive for SARS-CoV replication by lentiviral transduction of the human angiotensin-converting enzyme 2 receptor. Cells from cotton rat, goat, and sheep provided control scenarios that represent host systems in which SARS-CoV is neither endemic nor epidemic. Independent of the cell system, the truncation of ORF8 (29 nt deletion) decreased replication up to 23-fold. The effect was independent of the type I interferon response. The 29 nt deletion in SARS-CoV is a deleterious mutation acquired along the initial human-to-human transmission chain. The resulting loss of fitness may be due to a founder effect, which has rarely been documented in processes of viral emergence. These results have important implications for the retrospective assessment of the threat posed by SARS.


Subject(s)
Host-Pathogen Interactions , RNA, Viral , Sequence Deletion , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/physiology , Virus Replication/genetics , Animals , Cell Line , Cells, Cultured , Chiroptera/virology , Disease Reservoirs , Humans , Recombinant Proteins , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
5.
J Gen Virol ; 98(5): 955-961, 2017 May.
Article in English | MEDLINE | ID: mdl-28555547

ABSTRACT

Our investigation of 1004 faecal specimens from European bats for picornaviruses by broadly reactive nested reverse transcription-PCR found picornaviral RNA in 28 samples (2.8 %). Phylogenetic analysis of the partial 3D genomic region suggested that one bat virus belonged to the species Enterovirus G (EV-G, formerly Porcine enterovirus B). Bat infection was supported by relatively high EV-G concentrations of 1.1×106 RNA copies per gram of faeces. All other bat viruses belonged either to the bat-associated genus Mischivirus, or to an unclassified Picornaviridae group distantly related to the genus Sapelovirus. Members of this unclassified sapelovirus-related group had RNA secondary structures in their 3'-nontranslated regions that were typical of enteroviruses and that resembled structures that occur in bat-associated coronaviruses, suggesting ancient recombination events. Based on sequence distances, several picornaviruses from European and Chinese bats were likely conspecific, suggesting connectivity of virus populations. Due to their high mutation rates and their diversity, picornaviruses may be useful tools for studies of bat and virus ecology.


Subject(s)
Chiroptera/virology , Picornaviridae/classification , Picornaviridae/isolation & purification , Animals , Asia , Cluster Analysis , Enteroviruses, Porcine , Europe , Feces/virology , Genome, Viral , Phylogeny , Picornaviridae/genetics , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology
6.
Sci Rep ; 6: 26637, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27217069

ABSTRACT

Crimean Congo hemorrhagic fever virus (CCHFV) is a highly virulent tick-borne pathogen that causes hemorrhagic fever in humans. The geographic range of human CCHF cases largely reflects the presence of ticks. However, highly similar CCHFV lineages occur in geographically distant regions. Tick-infested migratory birds have been suggested, but not confirmed, to contribute to the dispersal. Bats have recently been shown to carry nairoviruses distinct from CCHFV. In order to assess the presence of CCHFV in a wide range of bat species over a wide geographic range, we analyzed 1,135 sera from 16 different bat species collected in Congo, Gabon, Ghana, Germany, and Panama. Using a CCHFV glycoprotein-based indirect immunofluorescence test (IIFT), we identified reactive antibodies in 10.0% (114/1,135) of tested bats, pertaining to 12/16 tested species. Depending on the species, 3.6%-42.9% of cave-dwelling bats and 0.6%-7.1% of foliage-living bats were seropositive (two-tailed t-test, p = 0.0447 cave versus foliage). 11/30 IIFT-reactive sera from 10 different African bat species had neutralizing activity in a virus-like particle assay. Neutralization of full CCHFV was confirmed in 5 of 7 sera. Widespread infection of cave-dwelling bats may indicate a role for bats in the life cycle and geographic dispersal of CCHFV.


Subject(s)
Chiroptera , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Africa, Central/epidemiology , Animals , Chiroptera/blood , Chiroptera/virology , Germany/epidemiology , Hemorrhagic Fever, Crimean/blood , Hemorrhagic Fever, Crimean/epidemiology , Humans , Panama/epidemiology
7.
Proc Natl Acad Sci U S A ; 110(40): 16151-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043818

ABSTRACT

The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149-3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.


Subject(s)
Chiroptera/virology , Hepadnaviridae/genetics , Hepadnaviridae/pathogenicity , Zoonoses/virology , Animals , Base Sequence , Cell Line, Tumor , Cross Reactions/immunology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Genome/genetics , Hepatitis B virus/genetics , Hepatocytes/virology , Humans , Immunoblotting , In Situ Hybridization , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity , Tupaiidae
8.
PLoS Pathog ; 9(6): e1003438, 2013.
Article in English | MEDLINE | ID: mdl-23818848

ABSTRACT

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.


Subject(s)
Evolution, Molecular , Genome, Viral , Hepacivirus , Hepatitis C Antibodies/blood , Hepatitis C , Hepatitis, Animal , RNA, Viral , Rodentia , Animals , Base Sequence , Cats , Dogs , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/blood , Hepatitis C/genetics , Hepatitis C/virology , Hepatitis, Animal/blood , Hepatitis, Animal/genetics , Hepatitis, Animal/virology , Horses , Molecular Sequence Data , RNA, Viral/blood , RNA, Viral/genetics , Rodentia/blood , Rodentia/virology
9.
Emerg Infect Dis ; 19(3): 456-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23622767

ABSTRACT

We screened fecal specimens of 4,758 bats from Ghana and 272 bats from 4 European countries for betacoronaviruses. Viruses related to the novel human betacoronavirus EMC/2012 were detected in 46 (24.9%) of 185 Nycteris bats and 40 (14.7%) of 272 Pipistrellus bats. Their genetic relatedness indicated EMC/2012 originated from bats.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Animals , Bayes Theorem , Coronavirus/isolation & purification , Coronavirus Infections/virology , Europe , Feces/virology , Female , Genes, Viral , Ghana , Male , Molecular Sequence Data , Molecular Typing , Phylogeny , Sequence Analysis, DNA
10.
J Gen Virol ; 93(Pt 11): 2431-2435, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22875257

ABSTRACT

Drosophila X virus (DXV), the prototype Entomobirnavirus, is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating Culex pipiens complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus Entomobirnavirus. In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to (1927)GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains.


Subject(s)
Culex/virology , Entomobirnavirus/isolation & purification , Animals , Base Sequence , Cell Line , Cytopathogenic Effect, Viral , Entomobirnavirus/classification , Entomobirnavirus/genetics , Entomobirnavirus/pathogenicity , Gene Expression Regulation, Viral/physiology , Genome, Viral , Phylogeny , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
11.
J Virol ; 86(17): 9134-47, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22696648

ABSTRACT

Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic viruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae. Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analysis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence- and distance-based taxonomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors causally involved in the evolution of human HEV.


Subject(s)
Chiroptera/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Hepatitis E/veterinary , Hepatitis E/virology , Africa , Americas , Animals , Asia , Australia , Chiroptera/classification , Europe , Feces/virology , Genetic Variation , Genotype , Hepatitis E virus/classification , Hepevirus/classification , Hepevirus/genetics , Hepevirus/isolation & purification , Humans , Molecular Sequence Data , Open Reading Frames , Phylogeny , Viral Proteins/genetics , Zoonoses/classification , Zoonoses/virology
12.
Nat Commun ; 3: 796, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22531181

ABSTRACT

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Mammals/virology , Paramyxoviridae Infections/virology , Paramyxoviridae/classification , Paramyxoviridae/isolation & purification , Animals , Dogs , Humans , Mice , Molecular Sequence Data , Paramyxoviridae/genetics , Phylogeny
13.
PLoS One ; 6(11): e28131, 2011.
Article in English | MEDLINE | ID: mdl-22140523

ABSTRACT

Bats harbor several highly pathogenic zoonotic viruses including Rabies, Marburg, and henipaviruses, without overt clinical symptoms in the animals. It has been suspected that bats might have evolved particularly effective mechanisms to suppress viral replication. Here, we investigated interferon (IFN) response, -induction, -secretion and -signaling in epithelial-like cells of the relevant and abundant African fruit bat species, Eidolon helvum (E. helvum). Immortalized cell lines were generated; their potential to induce and react on IFN was confirmed, and biological assays were adapted to application in bat cell cultures, enabling comparison of landmark IFN properties with that of common mammalian cell lines. E. helvum cells were fully capable of reacting to viral and artificial IFN stimuli. E. helvum cells showed highest IFN mRNA induction, highly productive IFN protein secretion, and evidence of efficient IFN stimulated gene induction. In an Alphavirus infection model, O'nyong-nyong virus exhibited strong IFN induction but evaded the IFN response by translational rather than transcriptional shutoff, similar to other Alphavirus infections. These novel IFN-competent cell lines will allow comparative research on zoonotic, bat-borne viruses in order to model mechanisms of viral maintenance and emergence in bat reservoirs.


Subject(s)
Chiroptera/immunology , Chiroptera/virology , Fruit , Interferon Type I/immunology , Africa , Animals , Biological Assay , COS Cells , Calibration , Cell Line, Transformed , Chlorocebus aethiops , Gene Expression Regulation , Henipavirus/physiology , Humans , Interferon Type I/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vesiculovirus/physiology
14.
Emerg Infect Dis ; 17(3): 449-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21392436

ABSTRACT

Bats host noteworthy viral pathogens, including coronaviruses, astroviruses, and adenoviruses. Knowledge on the ecology of reservoir-borne viruses is critical for preventive approaches against zoonotic epidemics. We studied a maternity colony of Myotis myotis bats in the attic of a private house in a suburban neighborhood in Rhineland-Palatinate, Germany, during 2008, 2009, and 2010. One coronavirus, 6 astroviruses, and 1 novel adenovirus were identified and monitored quantitatively. Strong and specific amplification of RNA viruses, but not of DNA viruses, occurred during colony formation and after parturition. The breeding success of the colony was significantly better in 2010 than in 2008, in spite of stronger amplification of coronaviruses and astroviruses in 2010, suggesting that these viruses had little pathogenic influence on bats. However, the general correlation of virus and bat population dynamics suggests that bats control infections similar to other mammals and that they may well experience epidemics of viruses under certain circumstances.


Subject(s)
Breeding , Chiroptera/virology , Disease Reservoirs/virology , RNA Viruses/genetics , Virus Diseases/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adenoviridae/pathogenicity , Animals , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/pathogenicity , Chiroptera/physiology , DNA, Viral/analysis , DNA, Viral/genetics , Female , Germany , Molecular Sequence Data , Phylogeny , Population Dynamics , RNA Viruses/isolation & purification , RNA Viruses/pathogenicity , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
15.
J Virol ; 84(21): 11336-49, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20686038

ABSTRACT

Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4×10(8) copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV.


Subject(s)
Chiroptera/virology , Coronavirus/classification , Genome, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Base Sequence , China , Europe , Humans
16.
Emerg Infect Dis ; 15(9): 1377-84, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19788804

ABSTRACT

We tested 12 bat species in Ghana for coronavirus (CoV) RNA. The virus prevalence in insectivorous bats (n = 123) was 9.76%. CoV was not detected in 212 fecal samples from Eidolon helvum fruit bats. Leaf-nosed bats pertaining to Hipposideros ruber by morphology had group 1 and group 2 CoVs. Virus concentrations were < or =45,000 copies/100 mg of bat feces. The diversified group 1 CoV shared a common ancestor with the human common cold virus hCoV-229E but not with hCoV-NL63, disputing hypotheses of common human descent. The most recent common ancestor of hCoV-229E and GhanaBt-CoVGrp1 existed in approximately 1686-1800 ad. The GhanaBt-CoVGrp2 shared an old ancestor (approximately 2,400 years) with the severe acute respiratory syndrome-like group of CoV.


Subject(s)
Chiroptera/virology , Coronavirus 229E, Human/classification , Coronavirus , Severe acute respiratory syndrome-related coronavirus/classification , Animals , Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus 229E, Human/genetics , Feces/virology , Female , Ghana , Humans , Male , Molecular Sequence Data , Phylogeny , RNA, Viral/analysis , RNA, Viral/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Sequence Analysis, DNA
17.
PLoS One ; 4(7): e6367, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19636378

ABSTRACT

BACKGROUND: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.


Subject(s)
Chiroptera/virology , Henipavirus/genetics , RNA, Viral/genetics , Animals , Disease Reservoirs
18.
Emerg Infect Dis ; 14(4): 626-31, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18400147

ABSTRACT

We tested 315 bats from 7 different bat species in northern Germany for coronaviruses by reverse transcription-PCR. The overall prevalence was 9.8%. There were 4 lineages of group I coronaviruses in association with 4 different species of verspertilionid bats (Myotis dasycneme, M. daubentonii, Pipistrellus nathusii, P. pygmaeus). The lineages formed a monophyletic clade of bat coronaviruses found in northern Germany. The clade of bat coronaviruses have a sister relationship with a clade of Chinese type I coronaviruses that were also associated with the Myotis genus (M. ricketti). Young age and ongoing lactation, but not sex or existing gravidity, correlated significantly with coronavirus detection. The virus is probably maintained on the population level by amplification and transmission in maternity colonies, rather than being maintained in individual bats.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/classification , Animals , Chiroptera/classification , Coronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Germany/epidemiology , Male , Phylogeny , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...