Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 11111, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773328

ABSTRACT

The article presents an innovative approach to the analysis of nanofluids using a nonlinear multifractal algorithm. The conducted research concerned nanofluids prepared from SiO2 nanoparticles (~ 0.01 g) suspended in 100 ml of demineralized water and in 100 ml of 99.5% isopropanol. Subsequently, the nanofluids were subjected to conventional characterization methods such as: determination of the contact angle, determination of zeta potential, pH, and particle size analysis. The obtained results show that the prepared nanofluid is stable in terms of agglomeration over time (nanofluid suspension) and properly prepared in terms of dissolving and dispersing powder particles. The authors, analyzing the results of the presented methods for characterizing nanofluids, proposed a multifractal analysis, which allows detailed local descriptions of complex scaling behaviour, using a spectrum of singularity exponents. Nonlinear analyzes show that the use of multifractal algorithm for nanofluids can improve the process of fluid quality analysis and its preparation based on the multifractal spectrum.

2.
Micron ; 158: 103262, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35378432

ABSTRACT

The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam (MoNi4/MoO2@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO2 and MoNi4. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi4/MoO2@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO2 micro cuboids. Laboratory nano-XCT shows that the MoO2 micro cuboids with a rectangular cross-section of 0.5 × 1 µm2 and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi4 nanoparticles with a size of 20-100 nm, positioned on single MoO2 cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.

3.
Sci Rep ; 11(1): 14555, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267299

ABSTRACT

The diatom shell is an example of complex siliceous structure which is a suitable model to demonstrate the process of digging into the third dimension using modern visualization techniques. This paper demonstrates importance of a comprehensive multi-length scale approach to the bio-structures/materials with the usage of state-of-the-art imaging techniques. Imaging of diatoms applying visible light, electron and X-ray microscopy provide a deeper insight into the morphology of their frustules.

4.
Nanomaterials (Basel) ; 11(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202999

ABSTRACT

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.

5.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499119

ABSTRACT

Silicon nitride-zirconia-graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale microscopy confirms that the phases disperse evenly in the microstructure without obvious agglomeration. The MLG flakes well dispersed between ceramic matrix grains slow down the phase transformation from α to ß-Si3N4, subsequent needle-like growth of ß-Si3N4 rods and the densification due to the reduction in sintering additives particularly in the case with 30 wt.% MLG. The size distribution of Si3N4 phase shifts towards a larger size range with the increase in graphene content from 5 to 30 wt.%, while a higher graphene content (30 wt.%) hinders the growth of the ZrO2 phase. The composite with 30 wt.% MLG has a porosity of 47%, the one with 5 wt.% exhibits a porosity of approximately 30%. Both Si3N4/MLG composites show potential resistance to contact or indentation damage. Crack initiation and propagation, densification of the porous microstructure, and shift of ceramic phases are observed using in-situ transmission electron microscopy. The crack propagates through the ceramic/MLG interface and through both the ceramic and the non-ceramic components in the composite with low graphene content. However, the crack prefers to bypass ceramic phases in the composite with 30 wt.% MLG.

6.
Nanomaterials (Basel) ; 10(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443489

ABSTRACT

Diatom frustules, with their hierarchical three-dimensional patterned silica structures at nano to micrometer dimensions, can be a paragon for the design of lightweight structural materials. However, the mechanical properties of frustules, especially the species with pennate symmetry, have not been studied systematically. A novel approach combining in situ micro-indentation and high-resolution X-ray computed tomography (XCT)-based finite element analysis (FEA) at the identical sample is developed and applied to Didymosphenia geminata frustule. Furthermore, scanning electron microscopy and transmission electron microscopy investigations are conducted to obtain detailed information regarding the resolvable structures and the composition. During the in situ micro-indentation studies of Didymosphenia geminata frustule, a mainly elastic deformation behavior with displacement discontinuities/non-linearities is observed. To extract material properties from obtained load-displacement curves in the elastic region, elastic finite element method (FEM) simulations are conducted. Young's modulus is determined as 31.8 GPa. The method described in this paper allows understanding of the mechanical behavior of very complex structures.

7.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231143

ABSTRACT

The mechanical properties such as compressive strength and nanohardness were investigated for Pinctada margaritifera mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed. The results were compared with these obtained during the micro-indentation test done with the help of conventional Vickers indenter and subsequent scanning electron microscopy observations. The results revealed that the cracks formed during the indentation start to propagate in the calcite prism until they reach a ductile organic matrix where most of them are stopped. The obtained results confirm a strong anisotropy of both crack propagation and the mechanical strength caused by the formation of the prismatic structure in the outer layer of P. margaritifera shell.

8.
Nanotechnology ; 31(9): 095702, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31711049

ABSTRACT

Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, is excellently compatible with the materials used in today's semiconductor manufacturing. In this paper, silicene-terminated CaSi2 is cleaved inside a transmission electron microscope using an in situ manipulator. HRTEM studies on a standard lift-out lamella performed from several crystallographic orientations confirm the cell parameters of a = 3.7 Å and c = 30.60 Å, and allow to determine its exact orientation in the SEM/FIB system. A FIB procedure with corrected tilting and rotating angles has been developed to ensure that the tensile force applied by the manipulator is perpendicular to the (0 0 1) plane, and that the [1 0 0] pole axis could be used for HRTEM imaging. A sharp and flat cleavage interface with a length of more than 1 µm was observed in one in situ experiment. HRTEM images from multiple regions confirm that the flat cleavage follows the (0 0 3) plane of the CaSi2 crystal. The current in situ study demonstrates that a surface sheet with silicene-like atomic arrangement can be mechanically exfoliated from silicide compounds.

9.
Sci Rep ; 9(1): 19777, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31875023

ABSTRACT

Diatom frustules, with their diverse three-dimensional regular silica structures and nano- to micrometer dimensions, represent perfect model systems for biomimetic fabrication of materials and devices. The structure of a frustule of the diatom Didymosphenia geminata was nondestructively visualized using nano X-ray computed tomography (XCT) and transferred into a CAD file for the first time. Subsequently, this CAD file was used as the input for an engineered object, which was manufactured by applying an additive manufacturing technique (3D Selective Laser Melting, SLM) and using titanium powder. The self-similarity of the natural and the engineered objects was verified using nano and micro XCT. The biomimetic approach described in this paper is a proof-of-concept for future developments in the scaling-up of manufacturing based on special properties of microorganisms.

10.
Sci Rep ; 7(1): 9086, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831062

ABSTRACT

For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which are widely distributed in freshwater, seawater and wet soils, are well known for their intricate, siliceous cell walls called 'frustules'. Each type of diatom has a specific morphology with various pores, ribs, minute spines, marginal ridges and elevations. In this paper, the visualization is performed using nondestructive nano X-ray computed tomography (nano-XCT). Arbitrary cross-sections through the frustules, which can be extracted from the nano-XCT 3D data set for each direction, are validated via the destructive focused ion beam (FIB) cross-sectioning of regions of interest (ROIs) and subsequent observation by scanning electron microscopy (SEM). These 3D data are essential for understanding the functionality and potential applications of diatom cells.


Subject(s)
Diatoms/ultrastructure , Tomography, X-Ray/methods , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Nanotechnology , Porosity
11.
J Synchrotron Radiat ; 24(Pt 2): 413-421, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28244434

ABSTRACT

Point focusing measurements using pairs of directly bonded crossed multilayer Laue lenses (MLLs) are reported. Several flat and wedged MLLs have been fabricated out of a single deposition and assembled to realise point focusing devices. The wedged lenses have been manufactured by adding a stress layer onto flat lenses. Subsequent bending of the structure changes the relative orientation of the layer interfaces towards the stress-wedged geometry. The characterization at ESRF beamline ID13 at a photon energy of 10.5 keV demonstrated a nearly diffraction-limited focusing to a clean spot of 43 nm × 44 nm without significant side lobes with two wedged crossed MLLs using an illuminated aperture of approximately 17 µm × 17 µm to eliminate aberrations originating from layer placement errors in the full 52.7 µm × 52.7 µm aperture. These MLLs have an average individual diffraction efficiency of 44.5%. Scanning transmission X-ray microscopy measurements with convenient working distances were performed to demonstrate that the lenses are suitable for user experiments. Also discussed are the diffraction and focusing properties of crossed flat lenses made from the same deposition, which have been used as a reference. Here a focal spot size of 28 nm × 33 nm was achieved and significant side lobes were noticed at an illuminated aperture of approximately 23 µm × 23 µm.

12.
Sci Rep ; 7(1): 211, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28303001

ABSTRACT

The mechanical response of patterned graphene nanoribbons (GNRs) with a width less than 100 nm was studied in-situ using quantitative tensile testing in a transmission electron microscope (TEM). A high degree of crystallinity was confirmed for patterned nanoribbons before and after the in-situ experiment by selected area electron diffraction (SAED) patterns. However, the maximum local true strain of the nanoribbons was determined to be only about 3%. The simultaneously recorded low-loss electron energy loss spectrum (EELS) on the stretched nanoribbons did not reveal any bandgap opening. Density Functional Based Tight Binding (DFTB) simulation was conducted to predict a feasible bandgap opening as a function of width in GNRs at low strain. The bandgap of unstrained armchair graphene nanoribbons (AGNRs) vanished for a width of about 14.75 nm, and this critical width was reduced to 11.21 nm for a strain level of 2.2%. The measured low tensile failure strain may limit the practical capability of tuning the bandgap of patterned graphene nanostructures by strain engineering, and therefore, it should be considered in bandgap design for graphene-based electronic devices by strain engineering.

13.
Biochem Biophys Res Commun ; 479(2): 272-276, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27639647

ABSTRACT

A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity.


Subject(s)
Pollen/ultrastructure , Tomography, X-Ray Computed , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Microscopy, Phase-Contrast , Pinus
14.
J Vis Exp ; (100): e52447, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26167933

ABSTRACT

The time-dependent dielectric breakdown (TDDB) in on-chip interconnect stacks is one of the most critical failure mechanisms for microelectronic devices. The aggressive scaling of feature sizes, both on devices and interconnects, leads to serious challenges to ensure the required product reliability. Standard reliability tests and post-mortem failure analysis provide only limited information about the physics of failure mechanisms and degradation kinetics. Therefore it is necessary to develop new experimental approaches and procedures to study the TDDB failure mechanisms and degradation kinetics in particular. In this paper, an in situ experimental methodology in the transmission electron microscope (TEM) is demonstrated to investigate the TDDB degradation and failure mechanisms in Cu/ULK interconnect stacks. High quality imaging and chemical analysis are used to study the kinetic process. The in situ electrical test is integrated into the TEM to provide an elevated electrical field to the dielectrics. Electron tomography is utilized to characterize the directed Cu diffusion in the insulating dielectrics. This experimental procedure opens a possibility to study the failure mechanism in interconnect stacks of microelectronic products, and it could also be extended to other structures in active devices.


Subject(s)
Electronics/instrumentation , Electronics/methods , Microscopy, Electron, Transmission/instrumentation , Microscopy, Electron, Transmission/methods , Copper/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...