Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Neuroradiol J ; 36(1): 38-48, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35533263

ABSTRACT

BACKGROUND: Several types of head CT classification systems have been developed to prognosticate and stratify TBI patients. OBJECTIVE: The purpose of our study was to compare the predictive value and accuracy of the different CT scoring systems, including the Marshall, Rotterdam, Stockholm, Helsinki, and NIRIS systems, to inform specific patient management actions, using the ProTECT III population of patients with moderate to severe acute traumatic brain injury (TBI). METHODS: We used the data collected in the patients with moderate to severe (GCS score of 4-12) TBI enrolled in the ProTECT III clinical trial. ProTECT III was a NIH-funded, prospective, multicenter, randomized, double-blind, placebo-controlled clinical trial designed to determine the efficacy of early administration of IV progesterone. The CT scoring systems listed above were applied to the baseline CT scans obtained in the trial. We assessed the predictive accuracy of these scoring systems with respect to Glasgow Outcome Scale-Extended at 6 months, disability rating scale score, and mortality. RESULTS: A total of 882 subjects were enrolled in ProTECT III. Worse scores for each head CT scoring systems were highly correlated with unfavorable outcome, disability outcome, and mortality. The NIRIS classification was more strongly correlated than the Stockholm and Rotterdam CT scores, followed by the Helsinki and Marshall CT classification. The highest correlation was observed between NIRIS and mortality (estimated odds ratios of 4.83). CONCLUSION: All scores were highly associated with 6-month unfavorable, disability and mortality outcomes. NIRIS was also accurate in predicting TBI patients' management and disposition.


Subject(s)
Brain Injuries, Traumatic , Humans , Prospective Studies , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Glasgow Coma Scale , Prognosis
2.
Neuroradiol J ; 36(1): 68-75, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35588232

ABSTRACT

INTRODUCTION: Traumatic brain injury (TBI) is a major public health concern in the U.S. Recommendations for patients admitted in the emergency department (ED) to receive head computed tomography (CT) scan are currently guided by various clinical decision rules. OBJECTIVE: To compare how a blood biomarker approach compares with clinical decision rules in terms of predicting a positive head CT in adult patients suspected of TBI. METHODS: We retrospectively identified patients transported to our emergency department and underwent a noncontrast head CT due to suspicion of TBI and who had blood samples available. Published thresholds for serum and plasma glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and serum S100ß were used to make CT recommendations. These blood biomarker-based recommendations were compared to those achieved under widely used clinical head CT decision rules (Canadian, New Orleans, NEXUS II, and ACEP Clinical Policy). RESULTS: Our study included 463 patients, of which 122 (26.3%) had one or more abnormalities presenting on head CT. Individual blood biomarkers achieved high negative predictive value (NPV) for abnormal head CT findings (88%-98%), although positive predictive value (PPV) was consistently low (25%-42%). A composite biomarker-based decision rule (GFAP+UCH-L1)'s NPV of 100% and PPV of 29% were comparable or better than those achieved under the clinical decision rules. CONCLUSION: Blood biomarkers perform at least as well as clinical rules in terms of selecting TBI patients for head CT and may be easier to implement in the clinical setting. A prospective study is necessary to validate this approach.


Subject(s)
Brain Injuries, Traumatic , Clinical Decision Rules , Adult , Humans , Prospective Studies , Retrospective Studies , Ubiquitin Thiolesterase , Canada , Biomarkers , Tomography, X-Ray Computed
3.
J Neurotrauma ; 39(19-20): 1329-1338, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35546284

ABSTRACT

The objective of this work was to analyze the relationships between traumatic brain injury (TBI) on computed tomographic (CT) imaging and blood concentration of glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), and S100B. This prospective cohort study involved 644 TBI patients referred to Stanford Hospital's Emergency Department between November 2015 and April 2017. Plasma and serum samples of 462 patients were analyzed for levels of GFAP, UCH-L1, and S100B. Glial neuronal ratio (GNR) was calculated as the ratio between GFAP and UCH-L1 concentrations. Admission head CT scans were reviewed for TBI imaging common data elements, and performance of biomarkers for identifying TBI was assessed via area under the receiver operating characteristic curve (ROC). We also dichotomized biomarkers at established thresholds and estimated standard measures of classification accuracy. We assessed the ability of GFAP, UCH-L1, and GNR to discriminate small and large/diffuse lesions based on CT imaging using an ROC analysis. In our cohort of mostly mild TBI patients, GFAP was significantly more accurate in detecting all types of acute brain injuries than UCH-L1 in terms of area under the curve (AUC) values (p < 0.001), and also compared with S100B (p < 0.001). UCH-L1 and S100B had similar performance (comparable AUC values, p = 0.342). Sensitivity exceeded 0.8 for each biomarker across all different types of TBI injuries, and no significant differences were observed by type of injury. There was a significant difference between GFAP and GNR in distinguishing between small lesions and large/diffuse lesions in all injuries (p = 0.004, p = 0.007). In conclusion, GFAP, UCH-L1, and S100B show high sensitivity and negative predictive values for all types of TBI lesions on head CT. A combination of negative blood biomarkers (GFAP and UCH-L1) in a patient suspected of TBI may be used to safely obviate the need for a head CT scan. GFAP is a promising indicator to discriminate between small and large/diffuse TBI lesions.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Biomarkers , Brain Injuries, Traumatic/diagnosis , Cohort Studies , Glial Fibrillary Acidic Protein , Humans , Prospective Studies , Tomography, X-Ray Computed , Ubiquitin Thiolesterase
4.
J Neurotrauma ; 38(1): 1-43, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33115334

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.


Subject(s)
Brain Injuries/blood , Brain Injuries/diagnosis , Brain/metabolism , COVID-19/blood , COVID-19/diagnosis , Biomarkers/blood , Brain/pathology , Brain Injuries/etiology , COVID-19/complications , Humans , Nervous System Diseases/blood , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology , Prospective Studies , Retrospective Studies
5.
J Neurotrauma ; 37(22): 2401-2413, 2020 11 15.
Article in English | MEDLINE | ID: mdl-30595079

ABSTRACT

Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.


Subject(s)
Brain Injuries, Traumatic , Intracranial Pressure , Neurophysiological Monitoring , Translational Research, Biomedical , Animals , Disease Models, Animal , Humans
6.
Int J Mol Sci ; 19(10)2018 Oct 13.
Article in English | MEDLINE | ID: mdl-30322151

ABSTRACT

Traumatic brain injury (TBI) is associated with long-term disabilities and devastating chronic neurological complications including problems with cognition, motor function, sensory processing, as well as behavioral deficits and mental health problems such as anxiety, depression, personality change and social unsuitability. Clinical data suggest that disruption of the thalamo-cortical system including anatomical and metabolic changes in the thalamus following TBI might be responsible for some chronic neurological deficits following brain trauma. Detailed mechanisms of these pathological processes are not completely understood. The goal of this study was to evaluate changes in the thalamus following TBI focusing on cleaved-caspase-3, a specific effector of caspase pathway activation and myelin and microvascular pathologies using immuno- and histochemistry at different time points from 24 h to 3 months after controlled cortical impact (CCI) in adult Sprague-Dawley rats. Significant increases in cleaved-caspase-3 immunoreactivity in the thalamus were observed starting one month and persisting for at least three months following experimental TBI. Further, the study demonstrated an association of cleaved-caspase-3 with the demyelination of neuronal processes and tissue degeneration in the gray matter in the thalamus, as reflected in alterations of myelinated fiber integrity (luxol fast blue) and decreases in myelin basic protein (MBP) immunoreactivity. The immunofluorescent counterstaining of cleaved-caspase-3 with endothelial barrier antigen (EBA), a marker of blood-brain barrier, revealed limited direct and indirect associations of cleaved caspase-3 with blood-brain barrier damage. These results demonstrate for the first time a significant chronic upregulation of cleaved-caspase-3 in selected thalamic regions associated with cortical regions directly affected by CCI injury. Further, our study is also the first to report that significant upregulation of cleaved-caspase-3 in selected ipsilateral thalamic regions is associated with microvascular reorganization reflected in the significant increases in the number of microvessels with blood-brain barrier alterations detected by EBA staining. These findings provide new insights into potential mechanisms of TBI cell death involving chronic activation of caspase-3 associated with disrupted cortico-thalamic and thalamo-cortical connectivity. Moreover, this study offers the initial evidence that this upregulation of activated caspase-3, delayed degeneration of myelinated nerve fibers and microvascular reorganization with impaired blood-brain barrier integrity in the thalamus might represent reciprocal pathological processes affecting neuronal networks and brain function at the chronic stages of TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Caspase 3/metabolism , Microvessels/metabolism , Myelin Sheath/pathology , Thalamus/metabolism , Animals , Antigens, Surface/metabolism , Blood-Brain Barrier/metabolism , Disease Models, Animal , Humans , Microvessels/pathology , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
7.
Shock ; 50(1): 5-13, 2018 07.
Article in English | MEDLINE | ID: mdl-29280924

ABSTRACT

Trauma is a major problem in the United States. Mortality from trauma is the number one cause of death under the age of 45 in the United States and is the third leading cause of death for all age groups. There are approximately 200,000 deaths per year due to trauma in the United States at a cost of over $671 billion in combined healthcare costs and lost productivity. Unsurprisingly, trauma accounts for approximately 30% of all life-years lost in the United States. Due to immense development of trauma systems, a large majority of trauma patients survive the injury, but then go on to die from complications arising from the injury. These complications are marked by early and significant metabolic changes accompanied by inflammatory responses that lead to progressive organ failure and, ultimately, death. Early resuscitative and surgical interventions followed by close monitoring to identify and rescue treatment failures are key to successful outcomes. Currently, the adequacy of resuscitation is measured using vital signs, noninvasive methods such as bedside echocardiography or stroke volume variation, and other laboratory endpoints of resuscitation, such as lactate and base deficit. However, these methods may be too crude to understand cellular and subcellular changes that may be occurring in trauma patients. Better diagnostic and therapeutic markers are needed to assess the adequacy of interventions and monitor responses at a cellular and subcellular level and inform clinical decision-making before complications are clinically apparent. The developing field of metabolomics holds great promise in the identification and application of biochemical markers toward the clinical decision-making process.


Subject(s)
Metabolomics/methods , Precision Medicine/methods , Humans , Wounds and Injuries/blood , Wounds and Injuries/metabolism
9.
J Neurotrauma ; 35(1): 157-173, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28637381

ABSTRACT

Traumatic brain injury (TBI) may be a significant risk factor for development of neurodegenerative disorders such as chronic traumatic encephalopathy (CTE), post-traumatic epilepsy (PTE), and Alzheimer's (AD) and Parkinson's (PD) diseases. Chronic TBI is associated with several pathological features that are also characteristic of neurodegenerative diseases, including tau pathologies, caspase-3-mediated apoptosis, neuroinflammation, and microvascular alterations. The goal of this study was to evaluate changes following TBI in cleaved-caspase-3 and caspase-3-cleaved tau truncated at Asp421, and their relationships to cellular markers potentially associated with inflammation and blood-brain (BBB) barrier damage. We studied astrocytes (glial fibrillary acidic protein [GFAP]), microglia (ionized calcium-binding adapter molecule 1 [Iba1]), BBB (endothelial barrier antigen [EBA]), and activated microglia/macrophages (cluster of differentiation 68 [CD68]). We employed immunohistochemistry at different time points from 24 h to 3 months after controlled cortical impact (CCI) injury in rats, with particular interest in white matter. The study demonstrated that CCI caused chronic upregulation of cleaved-caspase-3 in the white matter of the corpus callosum. Increases in cleaved-caspase-3 in the corpus callosum were accompanied by accumulation of caspase-3-cleaved tau, with increasing perivascular aggregation 3 months after CCI. Immunofluorescence experiments further showed cellular co-localization of cleaved-caspase-3 with GFAP and CD68 and its adjacent localization with EBA, suggesting involvement of apoptosis and neuroinflammation in mechanisms of delayed BBB and microvascular damage that could contribute to white matter changes. This study also provides the first evidence that evolving upregulation of cleaved-caspase-3 is associated with accumulation of caspase-3-cleaved tau following experimental TBI, thus providing new insights into potential common mechanisms mediated by caspase-3 and underlying chronic TBI pathologies and neurodegenerative diseases.


Subject(s)
Apoptosis/physiology , Blood-Brain Barrier/pathology , Brain Injuries, Traumatic/pathology , Caspase 3/metabolism , Corpus Callosum/pathology , tau Proteins/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Corpus Callosum/metabolism , Male , Rats , Rats, Sprague-Dawley
10.
Brain Circ ; 3(2): 87-108, 2017.
Article in English | MEDLINE | ID: mdl-30276309

ABSTRACT

Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI), are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.

11.
Front Neurol ; 7: 198, 2016.
Article in English | MEDLINE | ID: mdl-27920753

ABSTRACT

Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics-systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal-global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation-anion exchange chromatography-1D SDS gel electrophoresis LC-MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, for treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.

12.
Methods Mol Biol ; 1462: 481-519, 2016.
Article in English | MEDLINE | ID: mdl-27604735

ABSTRACT

Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.


Subject(s)
Disease Models, Animal , Epilepsy, Post-Traumatic/diagnosis , Epilepsy, Post-Traumatic/physiopathology , Seizures/diagnosis , Seizures/etiology , Animals , Behavior, Animal , Biopsy , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/complications , Cerebral Cortex/pathology , Electroencephalography , Gene Expression Profiling , Gene Expression Regulation , Hippocampus/pathology , Immunohistochemistry , Risk Factors
13.
J Neurotrauma ; 33(6): 606-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671284

ABSTRACT

Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Drug Evaluation, Preclinical/trends , Neuroprotective Agents/therapeutic use , Animals , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Male , Neurology/methods , Neurology/trends , Rats , Rats, Sprague-Dawley
14.
J Neurotrauma ; 33(6): 595-605, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671651

ABSTRACT

Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Glial Fibrillary Acidic Protein/blood , Ubiquitin Thiolesterase/blood , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Rats , Rats, Sprague-Dawley
15.
Brain Circ ; 2(1): 28-47, 2016.
Article in English | MEDLINE | ID: mdl-30276272

ABSTRACT

The effectiveness of current management of critically ill stroke patients depends on rapid assessment of the type of stroke, ischemic or hemorrhagic, and on a patient's general clinical status. Thrombolytic therapy with recombinant tissue plasminogen activator (r-tPA) is the only effective treatment for ischemic stroke approved by the Food and Drug Administration (FDA), whereas no treatment has been shown to be effective for hemorrhagic stroke. Furthermore, a narrow therapeutic window and fear of precipitating intracranial hemorrhage by administering r-tPA cause many clinicians to avoid using this treatment. Thus, rapid and objective assessments of stroke type at admission would increase the number of patients with ischemic stroke receiving r-tPA treatment and thereby, improve outcome for many additional stroke patients. Considerable literature suggests that brain-specific protein biomarkers of glial [i.e. S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP)] and neuronal cells [e.g., ubiquitin C-terminal hydrolase-L1 (UCH-L1), neuron-specific enolase (NSE), αII-spectrin breakdown products SBDP120, SBDP145, and SBDP150, myelin basic protein (MBP), neurofilament light chain (NF-L), tau protein, visinin-like protein-1 (VLP 1), NR2 peptide] injury that could be detected in the cerebrospinal fluid (CSF) and peripheral blood might provide valuable and timely diagnostic information for stroke necessary to make prompt management and decisions, especially when the time of stroke onset cannot be determined. This information could include injury severity, prognosis of short-term and long-term outcomes, and discrimination of ischemic or hemorrhagic stroke. This chapter reviews the current status of the development of biomarker-based diagnosis of stroke and its potential application to improve stroke care.

16.
Brain Circ ; 2(3): 129-132, 2016.
Article in English | MEDLINE | ID: mdl-30276288

ABSTRACT

As traumatic brain injury (TBI) continues to affect children and young adults worldwide, research on reliable biomarkers grows as a possible aid in determining the severity of injury. However, many studies have revealed that diverse biomarkers such as S100B and myelin basic protein (MBP) have many limitations, such as their elevated normative concentrations in young children. Therefore, the results of these studies have yet to be translated to clinical applications. However, despite the setbacks of research into S100B and MBP, investigators continue to research viable biomarkers, notably glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1), as possible aids in medical decision making. Studies have revealed that GFAP and UCH-L1 actually are better predictors of injury progression than the before-mentioned biomarkers S100B and MBP. In addition, UCH-L1 has demonstrated an ability to detect injury while CT is negative, suggesting an ability to detect acute intracranial lesions. Here, we evaluate research testing levels of GFAP and UCH-L1 on children diagnosed with TBI and compare our results to those of other tested biomarkers. In a recent study done by Hayes et al., GFAP and UCH-L1 demonstrated the potential to recognize children with the possibility of poor outcome, allowing for more specialized treatments with clinical and laboratory applications. Although studies on GFAP and UCH-L1 have for the most part warranted positive results, further studies will be needed to confirm their role as reliable markers for pediatric TBI.

17.
J Neurotrauma ; 32(16): 1179-89, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25763798

ABSTRACT

A number of potential traumatic brain injury (TBI) biomarkers have been proposed and evaluated in the laboratory and clinic. This study investigated the temporal profile of circulating biomarkers of astrocytic and neuronal injury over the first 24 h and relevant histopathological changes after experimental moderate TBI. Twenty male rats were randomly assigned to either moderate parasagittal fluid percussion or sham injury. Blood serum samples were collected 2 d prior to TBI (baseline) and at 3, 6, and 24 h after TBI. A single cerebrospinal fluid (CSF) sample was collected from the cisterna magna 24 h after TBI, followed by euthanasia and brain harvesting for histology. Serum and CSF samples were analyzed for neuronal (ubiquitin carboxy-terminal hydrolase L1 [UCH-L1]) and astroglial (glial fibrillary acidic protein [GFAP]) protein levels using enzyme-linked immunosorbent assay. Brain histology included GFAP immunostaining and Fluoro-Jade histofluorescence. Serum and CSF levels of GFAP were near zero in sham animals. Serum GFAP levels were significantly elevated at 3 and 6 h post-TBI, compared with baseline and time-matched sham values, while UCH-L1 was significantly elevated only at 3 h post-TBI. Both CSF GFAP and UCH-L1 at 24 h post-TBI were significantly elevated, compared with sham. GFAP immunohistochemistry and FJ histofluorescence of degenerating neurons were performed in the same animals after 24 h survival. Histology revealed characteristic acute neuronal degeneration in the ipsilateral hippocampus and parietal cortex and reduction in GFAP immunostaining in areas of neuronal cell loss. The data provide evidence of a causal relationship between TBI-induced acute brain pathology and circulating neuronal and glial markers, further demonstrating their role as candidate markers for TBI. Studies of relative changes in biomarker levels in CSF and serum suggest that different mechanisms may underlie the transport and/or clearance of UCH-L1 and GFAP in these two compartments.


Subject(s)
Astrocytes/pathology , Brain Injuries/blood , Brain Injuries/pathology , Glial Fibrillary Acidic Protein/blood , Neurons/pathology , Ubiquitin Thiolesterase/blood , Animals , Biomarkers/blood , Disease Models, Animal , Hippocampus/pathology , Male , Parietal Lobe/pathology , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Mol Neurobiol ; 52(1): 696-709, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25270371

ABSTRACT

A major consequence of traumatic brain injury (TBI) is the rapid proteolytic degradation of structural cytoskeletal proteins. This process is largely reflected by the interruption of axonal transport as a result of extensive axonal injury leading to neuronal cell injury. Previous work from our group has described the extensive degradation of the axonally enriched cytoskeletal αII-spectrin protein which results in molecular signature breakdown products (BDPs) indicative of injury mechanisms and to specific protease activation both in vitro and in vivo. In the current study, we investigated the integrity of ßII-spectrin protein and its proteolytic profile both in primary rat cerebrocortical cell culture under apoptotic, necrotic, and excitotoxic challenge and extended to in vivo rat model of experimental TBI (controlled cortical impact model). Interestingly, our results revealed that the intact 260-kDa ßII-spectrin is degraded into major fragments (ßII-spectrin breakdown products (ßsBDPs)) of 110, 108, 85, and 80 kDa in rat brain (hippocampus and cortex) 48 h post-injury. These ßsBDP profiles were further characterized and compared to an in vitro ßII-spectrin fragmentation pattern of naive rat cortex lysate digested by calpain-2 and caspase-3. Results revealed that ßII-spectrin was degraded into major fragments of 110/85 kDa by calpain-2 activation and 108/80 kDa by caspase-3 activation. These data strongly support the hypothesis that in vivo activation of multiple protease system induces structural protein proteolysis involving ßII-spectrin proteolysis via a specific calpain and/or caspase-mediated pathway resulting in a signature, protease-specific ßsBDPs that are dependent upon the type of neural injury mechanism. This work extends on previous published work that discusses the interplay spectrin family (αII-spectrin and ßII-spectrin) and their susceptibility to protease proteolysis and their implication to neuronal cell death mechanisms.


Subject(s)
Brain Injuries/metabolism , Calpain/metabolism , Caspase 3/metabolism , Neurotoxicity Syndromes/metabolism , Proteolysis , Spectrin/metabolism , Animals , Apoptosis/drug effects , Brain Injuries/pathology , Cells, Cultured , Cerebral Cortex/pathology , Hippocampus/pathology , Humans , Immunoblotting , Male , Necrosis , Neurotoxicity Syndromes/pathology , Neurotoxins/toxicity , Protease Inhibitors/pharmacology , Proteolysis/drug effects , Rats, Sprague-Dawley , Time Factors
19.
PLoS One ; 9(3): e92698, 2014.
Article in English | MEDLINE | ID: mdl-24667434

ABSTRACT

The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.


Subject(s)
Autoantibodies , Brain Injuries/blood , Brain Injuries/immunology , Glial Fibrillary Acidic Protein/immunology , Immunoglobulin G , Adult , Animals , Astrocytes/immunology , Astrocytes/metabolism , Astrocytes/pathology , Autoantibodies/blood , Autoantibodies/immunology , Brain Injuries/pathology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Rats , Rats, Sprague-Dawley , Time Factors
20.
J Neurotrauma ; 31(13): 1180-93, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24564198

ABSTRACT

Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased understanding of mechanisms underlying delayed microvascular damage following TBI could provide novel insights into chronic pathological responses to TBI and potential common mechanisms underlying TBI and neurodegenerative diseases.


Subject(s)
Blood-Brain Barrier/pathology , Brain Injuries/pathology , Cerebrovascular Circulation , Disease Progression , Microcirculation , White Matter/pathology , Animals , Blood-Brain Barrier/metabolism , Brain Injuries/complications , Brain Injuries/metabolism , Cerebrovascular Circulation/physiology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Male , Microcirculation/physiology , Rats , Rats, Sprague-Dawley , Time Factors , White Matter/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...