Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 86(7): 807-15, 2000 Apr 14.
Article in English | MEDLINE | ID: mdl-10764416

ABSTRACT

Angiotensin II (Ang II)-mediated sympathostimulation may worsen the progression of cardiac failure, although the nature and mechanisms of such interactions are largely unknown. We previously demonstrated that Ang II combined with evolving cardiodepression (48-hour tachycardia pacing, 48hP) induces marked chamber stiffening and increases metalloproteinases (MMPs). Here, we test the hypothesis that both abnormalities stem from sympathostimulatory effects of Ang II. Forty-eight dogs were instrumented to serially assess conscious ventricular mechanics, MMP abundance and activity, and myocardial histopathology. 48hP combined with 5 days of Ang II (15+/-5 ng. kg(-1). min(-1) IV) more than doubled chamber stiffness (end-diastolic pressure >25 mm Hg, P<0.001), whereas stiffness was unchanged by Ang II or 48hP alone. In vitro and in situ zymography revealed increased MMP abundance and activity (principally 92-kDa gelatinase) from Ang II+48hP. Both stiffening and MMP changes were prevented by cotreatment with high-dose atenolol (which nearly fully inhibited isoproterenol-induced inotropy) but not partial beta-blockade. Myocellular damage with fibroblast/neutrophil infiltration from Ang II+48hP was also inhibited by high- but not low-dose atenolol, whereas collagen content was not elevated with either dose. These data support a role of sympathostimulation by Ang II in modulating myocardial MMP abundance and activity and diastolic stiffening in evolving heart failure and suggest a novel mechanism by which beta-blockade may limit chamber remodeling and diastolic dysfunction.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Angiotensin II/pharmacology , Atenolol/pharmacology , Heart/physiology , Hemodynamics/drug effects , Isoproterenol/pharmacology , Metalloendopeptidases/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Diastole/drug effects , Dogs , Enzyme Activation , Female , Heart/drug effects , Heart/physiopathology , Hemodynamics/physiology , Male , Myocardial Contraction/drug effects , Myocardium/enzymology , Receptors, Adrenergic, beta/physiology , Systole/drug effects , Tachycardia , Ventricular Function, Left/drug effects , Ventricular Function, Left/physiology
2.
Circulation ; 98(20): 2195-201, 1998 Nov 17.
Article in English | MEDLINE | ID: mdl-9815875

ABSTRACT

BACKGROUND: Endovascular injury induced by balloon withdrawal leads to the increased activation of matrix metalloproteinases (MMPs) in the vascular wall, allowing smooth muscle cells (SMCs) to digest the surrounding extracellular matrix (ECM) and migrate from the media into the intima. The objective of this study was to examine the effects of a replication-deficient adenovirus carrying the cDNA for human tissue inhibitor of metalloproteinase-2 (AdCMV.hTIMP-2) on SMC function in vitro and neointimal development in the injured rat carotid artery. METHODS AND RESULTS: Infection of cultured rat aortic SMCs at a multiplicity of infection of 100 with AdCMV.hTIMP-2 resulted in high-level expression of hTIMP-2 mRNA and protein secretion into the medium. Conditioned media (CM) from AdCMV. hTIMP-2-infected but not control virus (AdCMV.null or AdCMV. betagal)-infected SMCs inhibited MMP-2 activity on gelatin zymograms as well as the chemoattractant-directed migration of SMCs across reconstituted basement membrane proteins in the Boyden chamber assay. In contrast, AdCMV.hTIMP-2 CM had no effect on chemoattractant-directed migration of SMCs occurring in the absence of an ECM barrier or on the proliferation of cultured neointimal SMCs. Delivery of AdCMV.hTIMP-2 (2.5x10(9) pfu) to the carotid artery wall at the time of balloon withdrawal injury inhibited SMC migration into the intima by 36% (P<0.05) at 4 days and neointimal area by 53% (P<0.01) at 8 days and by 12% (P=NS) at 21 days after injury. AdCMV.hTIMP-2 had no effect on medial area. CONCLUSIONS: Adenovirus-mediated hTIMP-2 gene transfer inhibits SMC invasiveness in vitro and in vivo and delays neointimal development after carotid injury.


Subject(s)
Adenoviridae/genetics , Gene Transfer Techniques , Muscle, Smooth, Vascular/pathology , Tissue Inhibitor of Metalloproteinase-2/genetics , Animals , Cell Division , Cell Movement , Cells, Cultured , Humans , Male , Rats , Rats, Wistar
3.
Circ Res ; 82(4): 503-12, 1998 Mar 09.
Article in English | MEDLINE | ID: mdl-9506711

ABSTRACT

Synergistic interaction between angiotensin II (Ang II) and evolving cardiodepression may play an important role in worsening chamber function, particularly in diastole. To test this hypothesis, Ang II was infused at 10 or 17 ng.kg(-1).min(-1) in 18 conscious dogs 4 days before and during induction of subacute cardiodepression by 48-hour tachypacing. The lower dose yielded negligible systemic pressure changes. Twelve additional animals served as paced-only controls. Pressure-dimension relations were recorded, and serial endocardial biopsies were obtained to assess histological and metalloproteinase (MMP) changes. Forty-eight-hour pacing alone depressed systolic function but had little effect on diastolic stiffness. Ang II alone only modestly raised diastolic stiffness at both doses and enhanced contractility at the higher dose. These changes recovered toward baseline after a 7-day infusion. However, Ang II (at either dose) combined with 48-hour pacing markedly increased ventricular stiffness (110+/-26% over baseline) and end-diastolic pressure (22+/-1.7 mm Hg). In contrast, pacing-induced inotropic and relaxation abnormalities were not exacerbated by Ang II. Zymography revealed MMP activation (72- and 92-kD gelatinases and 52-kDa caseinase) after a 4-day Ang II infusion (at both doses), which persisted during pacing. Tachypacing initiated 24 hours after cessation of a 7-day Ang II infusion also resulted in diastolic stiffening and corresponded with MMP reactivation. Ang II also induced myocyte necrosis, inflammation, and subsequent interstitial fibrosis, but these changes correlated less with chamber mechanics. Thus, Ang II amplifies and accelerates diastolic dysfunction when combined with evolving cardiodepression. This phenomenon may also underlie Ang II influences in late-stage cardiomyopathy, when chamber distensibility declines.


Subject(s)
Angiotensin II/pharmacology , Diastole/drug effects , Tachycardia/physiopathology , Angiotensin I/blood , Angiotensin II/blood , Animals , Dogs , Enzyme Activation/drug effects , Female , Heart Failure/physiopathology , Heart Rate/drug effects , Hemodynamics/drug effects , Male , Metalloendopeptidases/metabolism , Myocardial Contraction/drug effects , Time Factors
4.
Circulation ; 97(1): 82-90, 1998.
Article in English | MEDLINE | ID: mdl-9443435

ABSTRACT

BACKGROUND: Remodeling of the injured vascular wall is dependent on the action of several extracellular proteases. Previous studies have shown that expression of matrix metalloproteinases (MMP-2 and MMP-9) is upregulated after vascular injury and that MMP-2 is required for the migration of cultured vascular smooth muscle cells across complex extracellular matrix barriers. The present study examined changes in the expression of membrane-type metalloproteinase (MT-MMP-1), a putative regulator of MMP-2, in the tissue localization of MMP-2, and in the expression of activated and latent forms of MMP-2 and the tissue inhibitor of metalloproteinases, TIMP-2, in rat carotid arteries subjected to balloon catheter injury. METHODS AND RESULTS: MT-MMP-1 mRNA levels increased sixfold after 3 days of injury, coinciding with an increase in MMP-2 activation assessed by gelatin zymography. Western blotting and gelatin zymography showed an increase in MMP-2 protein levels beginning 5 to 7 days after injury; immunocytochemistry and Western blotting showed that the increase occurred preferentially in the developing neointima. CONCLUSIONS: These results show that increased expression of MT-MMP-1 and activation of MMP-2 occurs early after injury to the rat carotid artery and that at later times MMP-2 is preferentially localized to the developing neointima.


Subject(s)
Angioplasty, Balloon/adverse effects , Carotid Arteries/enzymology , Carotid Arteries/pathology , Gelatinases/analysis , Metalloendopeptidases/analysis , Tunica Intima/physiology , Animals , Blotting, Western , Carotid Artery Injuries , Immunohistochemistry , Male , Matrix Metalloproteinase 2 , Matrix Metalloproteinases, Membrane-Associated , Metalloendopeptidases/genetics , RNA, Messenger/analysis , Rats , Rats, Wistar
5.
J Clin Invest ; 96(4): 1905-15, 1995 Oct.
Article in English | MEDLINE | ID: mdl-7560082

ABSTRACT

Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration.


Subject(s)
Fibroblast Growth Factor 2/physiology , Muscle, Smooth, Vascular/cytology , Platelet-Derived Growth Factor/physiology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Movement , Cells, Cultured , Humans , Mice , RNA, Messenger/analysis , Rats , Rats, Wistar
6.
J Cell Sci ; 108 ( Pt 4): 1497-508, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7615670

ABSTRACT

This study focuses on the effect of static and dynamic mechanical compression on the biosynthetic activity of chondrocytes cultured within agarose gel. Chondrocyte/agarose disks (3 mm diameter) were placed between impermeable platens and subjected to uniaxial unconfined compression at various times in culture (2-43 days). [35S]sulfate and [3H]proline radiolabel incorporation were used as measures of proteoglycan and protein synthesis, respectively. Graded levels of static compression (up to 50%) produced little or no change in biosynthesis at very early times, but resulted in significant decreases in synthesis with increasing compression amplitude at later times in culture; the latter observation was qualitatively similar to that seen in intact cartilage explants. Dynamic compression of approximately 3% dynamic strain amplitude (approximately equal to 30 microns displacement amplitude) at 0.01-1.0 Hz, superimposed on a static offset compression, stimulated radiolabel incorporation by an amount that increased with time in culture prior to loading as more matrix was deposited around and near the cells. This stimulation was also similar to that observed in cartilage explants. The presence of greater matrix content at later times in culture also created differences in biosynthetic response at the center versus near the periphery of the 3 mm chondrocyte/agarose disks. The fact that chondrocyte response to static compression was significantly affected by the presence or absence of matrix, as were the physical properties of the disks, suggested that cell-matrix interactions (e.g. mechanical and/or receptor mediated) and extracellular physicochemical effects (increased [Na+], reduced pH) may be more important than matrix-independent cell deformation and transport limitations in determining the biosynthetic response to static compression. For dynamic compression, fluid flow, streaming potentials, and cell-matrix interactions appeared to be more significant as stimuli than the small increase in fluid pressure, altered molecular transport, and matrix-independent cell deformation. The qualitative similarity in the biosynthetic response to mechanical compression of chondrocytes cultured in agarose gel and chondrocytes in intact cartilage further indicates that gel culture preserves certain physiological features of chondrocyte behavior and can be used to investigate chondrocyte response to physical and chemical stimuli in a controlled manner.


Subject(s)
Cartilage, Articular/physiology , Extracellular Matrix Proteins/biosynthesis , Glycosaminoglycans/biosynthesis , Proteoglycans/biosynthesis , Animals , Cartilage, Articular/cytology , Cartilage, Articular/ultrastructure , Cattle , Cells, Cultured , Culture Techniques/methods , Extracellular Matrix Proteins/antagonists & inhibitors , Kinetics , Microscopy, Electron , Proline/metabolism , Sepharose , Stress, Mechanical , Sulfates/metabolism , Sulfur Radioisotopes , Time Factors , Tritium
7.
Circ Res ; 75(1): 41-54, 1994 Jul.
Article in English | MEDLINE | ID: mdl-8013081

ABSTRACT

The migration of vascular smooth muscle cells (VSMCs) from the tunica media to the neointima is a key event in the development and progression of many vascular diseases and a highly predictable consequence of mechanical injury to the blood vessel. In vivo, VSMCs are surrounded by and embedded in a variety of extracellular matrices (ECMs) that must be traversed during migration. One of the principal barriers to cell movement in the intact vessel is the basement membrane (BM) that surrounds each VSMC and separates the VSMC-containing medial cell layer from the endothelium. We have used a Boyden chamber to monitor the ability of VSMCs to degrade a BM barrier as they migrate toward a chemoattractant and to define the role of extracellular proteases in this process. We show that cultured VSMCs can migrate across a BM barrier and that this ability was dependent on the phenotypic state of the cell. VSMCs maintained in a proliferating or "synthetic" state readily migrated across a BM toward a chemoattractant, whereas the migration of serum-starved/differentiated VSMCs was suppressed by > 80% (P < .001). By use of a number of peptides that inhibit matrix metalloproteinase (MMP) activity, the migration of proliferating VSMCs across the BM barrier was inhibited by > 80% (P < .0001), whereas migration that occurred in the absence of the barrier was unaffected. Northern blotting and zymographic analyses indicated that 72-kD type IV collagenase (MMP2) was the principal MMP expressed and secreted by these cells. Accordingly, antisera capable of selectively neutralizing MMP2 activity also inhibited VSMC migration across the barrier without significantly affecting the migration of VSMCs in the absence of the barrier. Finally, MMP2 activity was also regulated by the phenotypic state of the cells in that MMP2 activity expressed by serum-starved/differentiated VSMCs was < 5% of that measured in proliferating VSMCs. Extrapolating to the in vivo situation in which VSMCs reside in an ECM composed of various BM barriers, these results suggest that VSMC migration in vivo may be dependent on MMP2 activity. That activity, in turn, could be regulated by the phenotypic state of VSMCs and increase as these cells undergo the transition from a quiescent and differentiated state to that of a dedifferentiated, proliferating, and motile phenotype after injury to the vessel.


Subject(s)
Basement Membrane/physiology , Collagenases/metabolism , Muscle, Smooth, Vascular/physiology , Animals , Base Sequence , Cell Differentiation , Cell Movement , Cells, Cultured , Chemotaxis , Extracellular Matrix/enzymology , Matrix Metalloproteinase 9 , Metalloendopeptidases/metabolism , Molecular Probes/genetics , Molecular Sequence Data , Muscle, Smooth, Vascular/cytology , Rats , Rats, Wistar
8.
J Orthop Res ; 12(2): 151-60, 1994 Mar.
Article in English | MEDLINE | ID: mdl-8164086

ABSTRACT

It has been hypothesized that the electric fields associated with the dynamic loading of cartilage may affect its growth, remodeling, and biosynthesis. While the application of exogenous fields has been shown to modulate cartilage biosynthesis, it is not known what range of field magnitudes and frequencies can alter biosynthesis and how they relate to the magnitudes and frequencies of endogenous fields. Such information is necessary to understand and identify mechanisms by which fields may act on cartilage metabolism. In this study, incorporation of 35S-methionine was used as a marker for electric field-induced changes in chondrocyte protein synthesis in disks of cartilage from the femoropatellar groove of 1 to 2-week-old calves. The cartilage was stimulated sinusoidally at 1, 10, 100, 10(3), and 10(4) Hz with current densities of 10-30 mA/cm2. Incorporation was assessed in control disks maintained in the absence of applied current at 37, 41, and 43 degrees C. The possibility that applied currents would induce synthesis of the same stress proteins that are caused by heating or other mechanisms was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examination of gel fluorographs. Total radiolabel incorporation in cartilage that had been stimulated relative to incorporation in the controls increased with current density magnitudes greater than 10 mA/cm2. The increase was greatest at 100 Hz and 1 kHz, and it depended on the position on the joint surface from which the cartilage samples were taken. Together, these results suggest that endogenous electric fields could affect cartilage biosynthesis. Stress proteins were not induced at any current density when the electrodes were electrically connected but chemically isolated from the media by agarose bridges. Stress proteins were observed for disks incubated at temperatures greater than 39 degrees C (no field) and when the stimulating platinum electrodes were in direct contact with the media bathing the cartilage disks. Therefore, the increase in incorporation of 35S-methionine due to applied fields with the use of chemically isolated electrodes did not appear to be associated with stress response.


Subject(s)
Cartilage, Articular/metabolism , Protein Biosynthesis , Animals , Cattle , Electric Stimulation , Heat-Shock Proteins/biosynthesis , Hot Temperature , In Vitro Techniques
9.
J Orthop Res ; 10(6): 745-58, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1403287

ABSTRACT

The ability of chondrocytes from calf articular cartilage to synthesize and assemble a mechanically functional cartilage-like extracellular matrix was quantified in high cell density (approximately 10(7) cells/ml) agarose gel culture. The time evolution of chondrocyte proliferation, proteoglycan synthesis and loss to the media, and total deposition of glycosaminoglycan (GAG)-containing matrix within agarose gels was characterized during 10 weeks in culture. To assess whether the matrix deposited within the agarose gel was mechanically and electromechanically functional, we measured in parallel cultures the time evolution of dynamic mechanical stiffness and oscillatory streaming potential in uniaxial confined compression, and determined the intrinsic equilibrium modulus, hydraulic permeability, and electrokinetic coupling coefficient of the developing cultures. Biosynthetic rates were initially high, but by 1 month had fallen to a level similar to that found in the parent calf articular cartilage from which the cells were extracted. The majority of the newly synthesized proteoglycans remained in the gel. Histological sections showed matrix rich in proteoglycans and collagen fibrils developing around individual cells. The equilibrium modulus, dynamic stiffness, and oscillatory streaming potential rose to many times (>5x) their initial values at the start of the culture; the hydraulic permeability decreased to a fraction (approximately 1/10) that of the cell-laden porous agarose at the beginning of the culture. By day 35 of culture, DNA concentration (cell density), GAG concentration, stiffness, and streaming potential were all approximately 25% that of calf articular cartilage. The frequency dependence of the dynamic stiffness and potential was similar to that of calf articular cartilage. Together, these results suggested the formation of a mechanically functional matrix.


Subject(s)
Cartilage, Articular/cytology , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix/physiology , Glycosaminoglycans/biosynthesis , Animals , Biomechanical Phenomena , Cartilage, Articular/growth & development , Cartilage, Articular/metabolism , Cattle , Cells, Cultured , Collagen/biosynthesis , Cytoplasmic Streaming , DNA/biosynthesis , Proteoglycans/biosynthesis , Sepharose
SELECTION OF CITATIONS
SEARCH DETAIL
...