Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365837

ABSTRACT

With the recent advancements in the field of wearable technologies, the opportunity to monitor stress continuously using different physiological variables has gained significant interest. The early detection of stress can help improve healthcare and minimizes the negative impact of long-term stress. This paper reports outcomes of a pilot study and associated stress-monitoring dataset, named the "Stress-Predict Dataset", created by collecting physiological signals from healthy subjects using wrist-worn watches with a photoplethysmogram (PPG) sensor. While wearing these watches, 35 healthy volunteers underwent a series of tasks (i.e., Stroop color test, Trier Social Stress Test and Hyperventilation Provocation Test), along with a rest period in-between each task. They also answered questionnaires designed to induce stress levels compatible with daily life. The changes in the blood volume pulse (BVP) and heart rate were recorded by the watch and were labelled as occurring during stress-inducing tasks or a rest period (no stress). Additionally, respiratory rate was estimated using the BVP signal. Statistical models and personalised adaptive reference ranges were used to determine the utility of the proposed stressors and the extracted variables (heart rate and respiratory rate). The analysis showed that the interview session was the most significant stress stimulus, causing a significant variation in heart rate of 27 (77%) participants and respiratory rate of 28 (80%) participants out of 35. The outcomes of this study contribute to the understanding the role of stressors and their association with physiological response and provide a dataset to help develop new wearable solutions for more reliable, valid, and sensitive physio-logical stress monitoring.


Subject(s)
Wearable Electronic Devices , Humans , Pilot Projects , Heart Rate/physiology , Monitoring, Physiologic , Respiratory Rate , Photoplethysmography
2.
Bioorg Med Chem Lett ; 20(8): 2625-8, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20307979

ABSTRACT

The autoinducer (4S)-4,5-dihydroxypentane-2,3-dione ((S)-DPD, AI-2) facilitates chemical communication, termed 'quorum sensing', amongst a wide range of bacteria, The synthesis of (S)-DPD is challenging in part due to its instability. Herein we report a novel synthesis of (S)-DPD via (2S)-2,3-O-isopropylidene glyceraldehyde, through Wittig, dihydroxylation and oxidation reactions, with a complimentary asymmetric synthesis to a key precursor. Its enantiomer (R)-DPD, was prepared from d-mannitol via (2R)-2,3-O-isopropylideneglyceraldehyde. The synthesized enantiomers of DPD have AI-2 bioluminescence-inducing properties in the Vibrio harveyi BB170 strain.


Subject(s)
Pentanones/chemical synthesis , Pentanones/pharmacology , Quorum Sensing , Luminescence , Magnetic Resonance Spectroscopy , Mass Spectrometry , Spectrophotometry, Infrared , Stereoisomerism
3.
Nucleic Acids Res ; 34(8): 2347-54, 2006.
Article in English | MEDLINE | ID: mdl-16679453

ABSTRACT

Toxic and mutagenic O6-alkylguanine adducts in DNA are repaired by O6-alkylguanine-DNA alkyltransferases (MGMT) by transfer of the alkyl group to a cysteine residue in the active site. Comparisons in silico of prokaryotes and lower eukaryotes reveal the presence of a group of proteins [alkyltransferase-like (ATL) proteins] showing amino acid sequence similarity to MGMT, but where the cysteine at the putative active site is replaced by tryptophan. To examine whether ATL proteins play a role in the biological effects of alkylating agents, we inactivated the gene, referred to as atl1+, in Schizosaccharomyces pombe, an organism that does not possess a functional MGMT homologue. The mutants are substantially more susceptible to the toxic effects of the methylating agents, N-methyl-N-nitrosourea, N-methyl-N'nitro-N-nitrosoguanidine and methyl methanesulfonate and longer chain alkylating agents including N-ethyl-N-nitrosourea, ethyl methanesulfonate, N-propyl-N-nitrosourea and N-butyl-N-nitrosourea. Purified Atl1 protein does not transfer methyl groups from O6-methylguanine in [3H]-methylated DNA but reversibly inhibits methyl transfer by human MGMT. Atl1 binds to short single-stranded oligonucleotides containing O6-methyl, -benzyl, -4-bromothenyl or -hydroxyethyl-guanine but does not remove the alkyl group or base and does not cleave the oligonucleotide in the region of the lesion. This suggests that Atl1 acts by binding to O6-alkylguanine lesions and signalling them for processing by other DNA repair pathways. This is the first report describing an activity that protects S.pombe against the toxic effects of O6-alkylguanine adducts and the biological function of a family of proteins that is widely found in prokaryotes and lower eukaryotes.


Subject(s)
Alkyl and Aryl Transferases/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Alkyl and Aryl Transferases/genetics , Alkylating Agents/toxicity , DNA Repair , DNA-Binding Proteins/genetics , Gene Deletion , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Oligonucleotides/chemistry , Schizosaccharomyces/drug effects , Schizosaccharomyces pombe Proteins/genetics
4.
Nucleic Acids Res ; 34(6): 1884-91, 2006.
Article in English | MEDLINE | ID: mdl-16609128

ABSTRACT

The human DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) dealkylates mutagenic O6-alkylguanine lesions within DNA in an irreversible reaction which results in inactivation of the protein. MGMT also provides resistance of tumours to alkylating agents used in cancer chemotherapy and its inactivation is therefore of particular clinical importance. We describe a post-DNA synthesis strategy which exploits the novel, modified base 2-amino-6-methylsulfonylpurine and allows access for the first time to a wide variety of oligodeoxyribonucleotides (ODNs) containing O6-alkylguanines. One such ODN containing O6-(4-bromothenyl)guanine is the most potent inactivator described to date with an IC50 of 0.1 nM.


Subject(s)
Guanine/analogs & derivatives , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Oligodeoxyribonucleotides/chemical synthesis , Guanine/chemistry , Humans , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...