Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Life Sci ; 240: 117068, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31751583

ABSTRACT

AIMS: Bradycardia contributes to tachy-brady arrhythmias or sinus arrest during heart failure (HF). Sinoatrial node (SAN) adenosine A1 receptors (ADO A1Rs) are upregulated in HF, and adenosine is known to exert negative chronotropic effects on the SAN. Here, we investigated the role of A1R signaling at physiologically relevant ADO concentrations on HF SAN pacemaker cells. MAIN METHODS: Dogs with tachypacing-induced chronic HF and normal controls (CTL) were studied. SAN tissue was collected for A1R and GIRK mRNA quantification. SAN cells were isolated for perforated patch clamp recordings and firing rate (bpm), slope of slow diastolic depolarization (SDD), and maximum diastolic potential (MDP) were measured. Action potentials (APs) and currents were recorded before and after addition of 1 and 10 µM ADO. To assess contributions of A1R and G protein-coupled Inward Rectifier Potassium Current (GIRK) to ADO effects, APs were measured after the addition of DPCPX (selective A1R antagonist) or TPQ (selective GIRK blocker). KEY FINDINGS: A1R and GIRK mRNA expression were significantly increased in HF. In addition, ADO induced greater rate slowing and membrane hyperpolarization in HF vs CTL (p < 0.05). DPCPX prevented ADO-induced rate slowing in CTL and HF cells. The ADO-induced inward rectifying current, IKado, was observed significantly more frequently in HF than in CTL. TPQ prevented ADO-induced rate slowing in HF. SIGNIFICANCE: An increase in A1R and GIRK expression enhances IKAdo, causing hyperpolarization, and subsequent negative chronotropic effects in canine chronic HF at relevant [ADO]. GIRK blockade may be a useful strategy to mitigate bradycardia in HF.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Adenosine/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/agonists , Heart Failure/physiopathology , Heart Rate/drug effects , Receptor, Adenosine A1/metabolism , Sinoatrial Node/cytology , Sinoatrial Node/drug effects , Action Potentials/drug effects , Adenosine A1 Receptor Antagonists/pharmacology , Animals , Bee Venoms/pharmacology , Biological Clocks , Chronic Disease , Dogs , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , In Vitro Techniques , Male , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Receptor, Adenosine A1/drug effects , Xanthines/pharmacology
2.
Circulation ; 132(7): 567-77, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26187182

ABSTRACT

BACKGROUND: Voltage-gated Na(+) channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca(2+)/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. METHODS AND RESULTS: To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca(2+) handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. CONCLUSIONS: Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.


Subject(s)
Arrhythmias, Cardiac/physiopathology , NAV1.5 Voltage-Gated Sodium Channel/physiology , Phosphoserine/metabolism , Ventricular Remodeling/physiology , Acetanilides/pharmacology , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/physiopathology , Constriction , Gene Knock-In Techniques , Ion Channel Gating/physiology , Male , Mice , Mice, Inbred C57BL , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Phosphorylation , Piperazines/pharmacology , Protein Processing, Post-Translational , Ranolazine , Sodium/metabolism , Sodium Channel Blockers/pharmacology
3.
J Am Heart Assoc ; 4(5)2015 May 26.
Article in English | MEDLINE | ID: mdl-26015324

ABSTRACT

BACKGROUND: Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. METHODS AND RESULTS: We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. CONCLUSIONS: We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams.


Subject(s)
Action Potentials/drug effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Mutation , Nerve Tissue Proteins/genetics , Potassium Channel Blockers/therapeutic use , Potassium Channels/genetics , Vasodilator Agents/therapeutic use , Ventricular Fibrillation/genetics , Ventricular Fibrillation/physiopathology , 4-Aminopyridine/therapeutic use , Adult , Cilostazol , Drug Therapy, Combination , Electrocardiography , Exome/genetics , Genetic Variation , Heart Rate/drug effects , Humans , Male , Sequence Analysis, DNA , Tetrazoles/therapeutic use , Treatment Outcome , Ventricular Fibrillation/drug therapy
4.
Life Sci ; 111(1-2): 1-5, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25064823

ABSTRACT

Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?"


Subject(s)
Mathematics , Models, Biological , Physiological Phenomena , Animals , Humans , Physiology/methods
5.
PLoS One ; 9(2): e89049, 2014.
Article in English | MEDLINE | ID: mdl-24533169

ABSTRACT

Normal heart rhythm (sinus rhythm) is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation). While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution) that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity) and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling) that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.


Subject(s)
Action Potentials , Models, Cardiovascular , Sinoatrial Node/cytology , Animals , Heart Atria/cytology , Heart Ventricles/cytology , Mice , Time Factors
6.
Cardiovasc Res ; 102(1): 166-75, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24445605

ABSTRACT

AIMS: Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K(+) channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K(+) channel (K(2P)) family members, despite their potential importance in modulation of heart function. METHODS AND RESULTS: Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K(2P) channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that ß(IV)-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing ß(IV)-spectrin lacking TREK-1 binding (qv(4J)) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal ß(IV)-spectrin levels in human heart failure. CONCLUSIONS: These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for ß(IV)-spectrin in organizing functional membrane domains critical for normal heart function.


Subject(s)
Myocardium/metabolism , Nerve Tissue Proteins/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Spectrin/metabolism , Animals , Cell Membrane/metabolism , Mice , Myocardium/cytology
7.
J Cardiovasc Electrophysiol ; 25(3): 299-306, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24256556

ABSTRACT

INTRODUCTION: Bisphosphonates, including ibandronate, are used in the prevention and treatment of osteoporosis. METHODS AND RESULTS: We report a case of suspected ibandronate-associated arrhythmia, following a single dose of ibandronate in a 55-year-old female. ECG at presentation revealed frequent ectopy and QT/QTc interval prolongation; at follow-up 9 months later the QT/QTc intervals were normalized. Proarrhythmic potential of ibandronate was assessed with a combination of in vivo and in vitro approaches in canines and canine ventricular myocytes. We observed late onset in vivo repolarization instability after ibandronate treatment. Myocytes superfused with ibandronate exhibited action potential duration (APD) prolongation and variability, increased early afterdepolarizations (EADs) and reduced Ito (P < 0.05), with no change in IKr . Ibandronate-induced APD changes and EADs were prevented by inhibition of intracellular calcium cycling. Ibandronate increased sarcoplasmic reticulum calcium load; during washout there was an increase in calcium spark frequency and spontaneous calcium waves. Computational modeling was used to examine the observed effects of ibandronate. While reductions in Ito alone had modest effects on APD, when combined with altered RyR inactivation kinetics, the model predicted effects on APD and SR Ca(2+) load consistent with observed experimental results. CONCLUSION: Ibandronate may increase the susceptibility to ventricular ectopy and arrhythmias. Collectively these data suggest that reduced Ito combined with abnormal RyR calcium handling may result in a previously unrecognized form of drug-induced proarrhythmia.


Subject(s)
Bone Density Conservation Agents/adverse effects , Diphosphonates/adverse effects , Ventricular Fibrillation/chemically induced , Ventricular Fibrillation/diagnosis , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cells, Cultured , Dogs , Female , Humans , Ibandronic Acid , Male , Middle Aged , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Ventricular Fibrillation/physiopathology
8.
J Clin Invest ; 123(3): 1262-74, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23426181

ABSTRACT

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Diabetes Mellitus, Experimental/enzymology , Myocardial Infarction/enzymology , Sinoatrial Node/enzymology , Animals , Apoptosis , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cardiac Output , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/mortality , Female , Fibrosis , Heart Rate , Humans , In Vitro Techniques , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/mortality , Myocardium/enzymology , Myocardium/pathology , Oxidation-Reduction , Oxidative Stress , Peptides/pharmacology , Reactive Oxygen Species/metabolism , Sinoatrial Node/pathology , Sinoatrial Node/physiopathology
9.
Am J Physiol Heart Circ Physiol ; 304(9): H1253-66, 2013 May.
Article in English | MEDLINE | ID: mdl-23436330

ABSTRACT

Ankyrin-B is a multifunctional adapter protein responsible for localization and stabilization of select ion channels, transporters, and signaling molecules in excitable cells including cardiomyocytes. Ankyrin-B dysfunction has been linked with highly penetrant sinoatrial node (SAN) dysfunction and increased susceptibility to atrial fibrillation. While previous studies have identified a role for abnormal ion homeostasis in ventricular arrhythmias, the molecular mechanisms responsible for atrial arrhythmias and SAN dysfunction in human patients with ankyrin-B syndrome are unclear. Here, we develop a computational model of ankyrin-B dysfunction in atrial and SAN cells and tissue to determine the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human patients with ankyrin-B syndrome. Our simulations predict that defective membrane targeting of the voltage-gated L-type Ca(2+) channel Cav1.3 leads to action potential shortening that reduces the critical atrial tissue mass needed to sustain reentrant activation. In parallel, increased fibrosis results in conduction slowing that further increases the susceptibility to sustained reentry in the setting of ankyrin-B dysfunction. In SAN cells, loss of Cav1.3 slows spontaneous pacemaking activity, whereas defects in Na(+)/Ca(2+) exchanger and Na(+)/K(+) ATPase increase variability in SAN cell firing. Finally, simulations of the intact SAN reveal a shift in primary pacemaker site, SAN exit block, and even SAN failure in ankyrin-B-deficient tissue. These studies identify the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human disease. Importantly, ankyrin-B dysfunction involves changes at both the cell and tissue levels that favor the common manifestation of atrial arrhythmias and SAN dysfunction.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation/physiopathology , Models, Cardiovascular , Sinoatrial Node/physiopathology , Action Potentials , Animals , Ankyrins/metabolism , Calcium Channels, L-Type/metabolism , Computer Simulation , Fibrosis/physiopathology , Heart Atria/pathology , Humans , Mice , Sinoatrial Node/pathology , Sodium-Calcium Exchanger/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
10.
Circulation ; 126(17): 2084-94, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23008441

ABSTRACT

BACKGROUND: Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked to potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite more than a decade of investigation. Posttranslational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel posttranslational modifications and disease. We recently identified a novel pathway for posttranslational regulation of the primary cardiac voltage-gated Na(+) channel (Na(v)1.5) by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, a role for this pathway in cardiac disease has not been evaluated. METHODS AND RESULTS: We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Na(v)1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Na(v)1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that the human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Na(v)1.5, resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel, resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large-animal model of acquired heart disease and in failing human myocardium. CONCLUSIONS: We identify the mechanism for 2 human arrhythmia variants that affect Na(v)1.5 channel activity through direct effects on channel posttranslational modification. We propose that the CaMKII phosphorylation motif in the Na(v)1.5 DI-DII cytoplasmic loop is a critical nodal point for proarrhythmic changes to Na(v)1.5 in congenital and acquired cardiac disease.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cells, Cultured , Cytoplasm/enzymology , Cytoplasm/genetics , Cytoplasm/metabolism , Dogs , Genetic Variation , HEK293 Cells , Humans , Mice , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phosphorylation , Protein Processing, Post-Translational/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...