Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(43): eadi4038, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878704

ABSTRACT

Heteroplasmic mitochondrial DNA (mtDNA) mutations are a major cause of inherited disease and contribute to common late-onset human disorders. The late onset and clinical progression of mtDNA-associated disease is thought to be due to changing heteroplasmy levels, but it is not known how and when this occurs. Performing high-throughput single-cell genotyping in two mouse models of human mtDNA disease, we saw unanticipated cell-to-cell differences in mtDNA heteroplasmy levels that emerged prenatally and progressively increased throughout life. Proliferating spleen cells and nondividing brain cells had a similar single-cell heteroplasmy variance, implicating mtDNA or organelle turnover as the major force determining cell heteroplasmy levels. The two different mtDNA mutations segregated at different rates with no evidence of selection, consistent with different rates of random genetic drift in vivo, leading to the accumulation of cells with a very high mutation burden at different rates. This provides an explanation for differences in severity seen in human diseases caused by similar mtDNA mutations.


Subject(s)
DNA, Mitochondrial , Mosaicism , Animals , Mice , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , Single-Cell Analysis
2.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36827974

ABSTRACT

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Subject(s)
Mitochondria , Organogenesis , Animals , Female , Humans , Mice , Pregnancy , Cell Lineage , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondrial Diseases , Organ Specificity , Embryonic Development , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
3.
Am J Respir Cell Mol Biol ; 68(1): 103-115, 2023 01.
Article in English | MEDLINE | ID: mdl-36264759

ABSTRACT

Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/pathology , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Pulmonary Artery/pathology , Endothelium/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism
4.
Neurotrauma Rep ; 3(1): 415-420, 2022.
Article in English | MEDLINE | ID: mdl-36204389

ABSTRACT

Traumatic brain injury and aneurysmal subarachnoid haemorrhage are a major cause of morbidity and mortality worldwide. Treatment options remain limited and are hampered by our understanding of the cellular and molecular mechanisms, including the inflammatory response observed in the brain. Mitochondrial DNA (mtDNA) has been shown to activate an innate inflammatory response by acting as a damage-associated molecular pattern (DAMP). Here, we show raised circulating cell-free (ccf) mtDNA levels in both cerebrospinal fluid (CSF) and serum within 48 h of brain injury. CSF ccf-mtDNA levels correlated with clinical severity and the interleukin-6 cytokine response. These findings support the use of ccf-mtDNA as a biomarker after acute brain injury linked to the inflammatory disease mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...