Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(13): 13103-13117, 2018 May.
Article in English | MEDLINE | ID: mdl-29488200

ABSTRACT

The aim of this study was to evaluate the nanoparticle emissions from a laser printer in a chamber in conjunction with emissions from printers in a print room (PR) and to characterize the processes that lead to increased nanoparticle concentrations, as well as to estimate the human particle dose of the printers' users. Measurements were conducted in a small stainless steel environmental chamber under controlled conditions, where the evolution of particle size distributions (PSDs) with time and printed pages was studied in detail. Printer was generating nanoparticles (vast majority ˂ 50 nm with mode on ~ 15 nm) primarily during cold startup. Previously, 1-week sampling was also done in a PR at the Technical University of Crete, where the tested laser printer is installed along with three other printers. Similarly, as it was observed in the chamber study, printers' startup on any given day was characterized by a sharp increase in particle number (PN) concentrations. Average measured PN concentrations during printing hours in PR (5.4 × 103 #/cm3) is similar to the one observed in chamber measurements (6.7 × 103 #/cm3). The ExDoM2 dosimetry model was further applied to calculate the deposition of particles in the human respiratory tract. More precisely, the increase in particle dose for an adult Caucasian male was 14.6- and 24.1-fold at printers' startup, and 1.2- and 5.2-fold during printing in the PR and experimental chamber, respectively, compared to the exposure dose at background concentrations (BCs).


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Inhalation Exposure/analysis , Models, Theoretical , Nanoparticles/analysis , Particulate Matter/analysis , Humans , Particle Size , Printing
2.
Int J Environ Health Res ; 25(5): 551-69, 2015.
Article in English | MEDLINE | ID: mdl-25563337

ABSTRACT

This study focuses on the development of a methodology for the determination of the contribution of fugitive dust emissions from landfill sites to ambient PM10 concentrations and the subsequent exposure to working personnel. Fugitive dust emissions in landfills mainly originate from resuspension due to truck traffic on paved and unpaved roads and from wind-blown dust from landfill cover soil. The results revealed that exposure to PM10, originating from fugitive dust emissions in the landfill site, was exceeding the health protection standards (50 µg m(-3)). The higher average daily PM10 concentration (average value) for weekdays was equal to 275 µg m(-3) and was computed for the areas nearby the unpaved road located inside the landfill facilities that lead to the landfill cell. The percentage contributions of road and wind-blown dust to the PM10 concentrations on weekdays were equal to 76 and 1%, respectively. The influence of the background concentration is estimated close to 23%.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Greece , Humans , Male , Particle Size , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...