Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38135794

ABSTRACT

Photosensitization, a powerful oxidation reaction, offers significant potential for wastewater treatment in the context of industrial process water reuse. This environmentally friendly process can be crucial in reducing water consumption and industrial pollution. The ultimate goal is to complete process water reuse, creating a closed-loop system that preserves the inherent value of water resources. The photosensitized oxidation reaction hinges on three essential components: the photosensitizer, visible light, and oxygen. In this study, we assess the performance of three distinct materials-silica, chitosan, and spongin-as carrier materials for incorporating the phthalocyanine photosensitizer (ZnPcS4) in the heterogenous photosensitization process. Among the three materials under study, chitosan emerged as the standout performer in reactor hydrodynamic performance. In the photooxidation process, the photosensitizer ZnPcS4 exhibited notable efficacy, resulting in a significant reduction of approximately 20 to 30% in the remaining COD concentration of the cellar wastewater. Chitosan demonstrated exceptional hydrodynamic characteristics and displayed a favorable response to pH adjustments within the range of 8 to 10, outperforming the other two carrier materials. To further enhance the efficiency of continuous operation, exploring methods for mitigating photosensitizer bleaching within the reaction medium and investigating the impact of different pH values on the process optimization would be prudent.

2.
Molecules ; 27(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014499

ABSTRACT

Visible light-sensitized oxidation of micropollutants (MPs) in the presence of meso-tetrakis(4-sulfonatophenyl)porphyrin photosensitizers was studied. In order to explore the role of type I (ROS generation) or type II (singlet oxygen) photooxidation, radical scavengers were used to obtain insight into the mechanism of photodegradation. It was revealed that singlet oxygen is the main ROS taking part in TPPS4- sensitized photooxidation of micropollutants. The interaction of MPs with 1O2 in deuterium oxide (D2O) was investigated by measuring the phosphorescence lifetime of 1O2. The rate constant (kq) for the total (physical and chemical) quenching of 1O2 by MPs was determined in a D2O buffer (pD 7, 9 and 10.8). The rate constants of singlet oxygen quenching and reaction with MPs were determined, and the rate constant of excited TPPS4 quenching by MPs was also estimated.


Subject(s)
Porphyrins , Singlet Oxygen , Kinetics , Oxidation-Reduction , Oxygen/chemistry , Porphyrins/chemistry , Reactive Oxygen Species/chemistry , Singlet Oxygen/chemistry
3.
J Environ Manage ; 265: 110502, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32275237

ABSTRACT

The main objective of this study was to develop the treatment system to change wastewater into a reliable source of recyclable water within the textile plant. Therefore, a highly polluted industrial wastewater originated in the dyeing of cotton was subjected to a multi-step treatment. The raw wastewater was characterized by the concentration of Reactive Black 5, the azo dye, as high as 842 mg/L, extreme alkalinity (pH 11.26) and salinity (NaCl concentration 52,290 mg/L). Correspondingly, the chemical oxygen demand (COD) was equal to 3440 mg/L and the total organic carbon (TOC) was 1790 mg/L in this wastewater. This salty, hardly degradable wastewater underwent the electrocoagulation (EC) on an industrial scale in the first step of the treatment. Although the industrial EC resulted in 84% of color removal in a very short time of 8 min, the wastewater was still characterized by an extremally high absorbance which corresponded to 100 mg/L of RB5. Moreover, EC resulted in the occurrence of burdensome by-products, of which one was identified in this study as an aniline derivative. The by-products contributed to high residual COD and TOC after EC (2120 mg/L and 1052 mg/L, respectively). Consequently, the catalytic ozonation was used by us as a second, the polishing, step of the treatment. The catalytic ozonation was found efficient in the removal of the residual color and colorless by-products. The wastewater after catalytic ozonation was colorless and the final COD and TOC decreased to 1283 and 695 mg/L, respectively. The average oxidation state (AOS), spectra analysis, and the toxicity assay showed catalytic ozonation efficient in the by-products oxidation. Consequently, the catalytic action of activated carbon (AC) was proved for the ozonation of textile wastewater. Ultimately, the recycling of purified wastewater into dyeing resulted in a very good color quality of textile samples (DECMC values below limiting value equal to 1.0).


Subject(s)
Ozone , Water Pollutants, Chemical , Coloring Agents , Electrocoagulation , Industrial Waste , Textile Industry , Textiles , Waste Disposal, Fluid , Wastewater
4.
Environ Sci Pollut Res Int ; 26(36): 37174-37192, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31749006

ABSTRACT

Parabens (esters of p-hydroxybenzoic acid) are xenobiosis belonging to endocrine disruptors and commonly used as a preservative in cosmetics, food, pharmaceutical, and personal care products. Their wide use is leading to their appearance in water and wastewater in the range from ng/L to mg/L. In fact, the toxicity of benzylparaben is comparable to bisphenol A. Therefore, it is important to find not only effective but also ecofriendly methods for their removal from aqueous environment since the traditional wastewater treatment approaches are ineffective. Herein, for the first time, such extended comparison of several radical-driven technologies for paraben mixture degradation is presented. The detailed evaluation included (1) comparison of ozone and hydroxyl peroxide processes; (2) comparison of catalytic and photocatalytic processes (including photocatalytic ozonation); (3) characterisation of catalysts using SEM, XRD, DRS, XPS techniques and BET isotherm; (4) mineralisation, biodegradability and toxicity assessment; and (5) cost assessment. O3, H2O2/Fe2+, H2O2/UVC, O3/H2O2, O3/UVA, O3/H2O2/UVA, UVA/catalyst, O3/catalyst and O3/UVA/catalyst were selected from advanced oxidation processes to degrade parabens as well as to decrease its toxicity towards Aliivibrio fischeri, Corbicula fluminea and Lepidium sativum. Research was focused on the photocatalytic process involving visible light (UVA and natural sunlight) and TiO2 catalysts modified by different metals (Ag, Pt, Pd, Au). Photocatalytic oxidation showed the lowest efficiency, while in combining ozone with catalysis and photocatalysis process, degradation efficiency and toxicity removal were improved. Photocatalytic ozonation slightly improved degradation efficiency but appreciably decreased transferred ozone dose (TOD). Results indicate that the degradation pathway is different, or different transformation products (TPs) could be formed, despite that the hydroxyl radicals are the main oxidant. Graphical abstract.


Subject(s)
Biodegradation, Environmental , Parabens/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aliivibrio fischeri , Catalysis , Endocrine Disruptors , Hydrogen Peroxide , Hydroxyl Radical , Oxidation-Reduction , Ozone , Sunlight , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
5.
Sci Total Environ ; 689: 79-89, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31271992

ABSTRACT

Self-organized TiO2 nanotubes as immobilized photocatalysts were evaluated in detail for the photocatalytic degradation of parabens mixtures from ultrapure water. This kind of approach can be a very suitable option for emerging contaminants degradation considering the possibility of the catalyst reuse and recovery which will be simpler than when catalytic powders are used. The anodization method was applied for the TiO2 nanotubes production under different preparation voltages (20, 30 and 40 V). These preparation conditions are important on the morphological characteristics of nanotubes such as length, as well as internal and external diameters. The photocatalytic efficiency was dependent on the materials preparation voltages. The photocatalytic oxidation was evaluated using two different irradiation sources, namely UVA and sunlight. These irradiation sources were evaluated for parabens mixture degradation using different number of catalytic plates. The increase of the number of plates improved the parabens degradation possibly due to the availability of more active sites which can be relevant for the hydroxyl radical's generation. The effect of the reactor design was also evaluated using sunlight irradiation. The configuration, position and solar concentrators can be important for the performance of degradation. The mechanism of degradation was analysed through by-products formation under sunlight irradiation. The main responsible for parabens degradation was hydroxyl radical. Decarboxylation, dealkylation and hydroxylation seem to be the most important reactional steps for the mixture decontamination.

6.
Sci Total Environ ; 646: 1468-1477, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30235632

ABSTRACT

Parabens are widely used as antimicrobial and preservative in pharmaceutical and personal products. Their presence has been detected in rivers and wastewater treatment plants. Photocatalytic ozonation process using a low amount of 0.1 wt% Ag-TiO2 proved to be efficient on the degradation of a mixture of five parabens using a low transferred ozone dose (TOD). The pH effect was analyzed under acidic and neutral conditions. Also, the effect of hydroxyl radical scavenger on parabens degradation and on by-products formation was discussed. Hydroxyl radical present a significant role over parabens degradation and also on by-products formation. The reaction mechanism was analyzed using municipal wastewater as a matrix to infer about the behavior of the process at actual conditions. Municipal wastewater as a matrix clearly enhanced the parabens degradation when compared with the case where ultrapure water was used. In fact, the TOD required for total parabens degradation is lowered 10-20 mg/L of TOD. Therefore, to understand the main responsible species for this improvement, the effects of several ions naturally present in wastewater (HCO3-, Cl- and SO42-) were tested. According to the results it seems that sulfate radical improves the process, while chloride and bicarbonate radicals decrease the process efficiency. In terms of toxicity the luminescence inhibition for Vibrio fischeri was analyzed. The inhibition significantly decreased for treated spiked municipal wastewater.

7.
Chemosphere ; 208: 674-681, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29894968

ABSTRACT

Corbicula fluminea, an Asian clam, is one of the worst invasive species in Europe that can survive in very adverse environmental conditions. Despite its negative impacts, the species also has the capacity to bioaccumulate heavy metals, contaminants and can be exploited for wastewater treatment purposes. The capacity of the Asian clam to remove Escherichia coli, used as fecal contamination indicator, was analyzed. Conventional wastewater treatment plants are not suitable to remove bacteria, thus resulting in treated municipal wastewater with high bacterial loads. E. coli clearance rate was analyzed as function of the number of clams. The bivalves can remove bacteria until concentrations below the detection limit in about 6 h. The adsorption on the clam shells' and bioaccumulation on the soft tissues were also analyzed. The depuration of clams along 48 h were analyzed revealing that no bacteria was detected in the water. Thus, these results suggest that Asian clam can bioprocess E. coli. On the other hand, results obtained by this methodology were compared with ozonation and photocatalytic oxidation using TiO2, Ag, Au, Pd-TiO2. In all treatments it was possible to achieve concentrations of E. coli below the detection limit. However, photocatalytic oxidation demands about 4700 folds more energy than ozonation, besides the costs associated with catalysts. Comparing complexity of ozonation with biofiltration, this study suggests that application of biofiltration using C. fluminea can be a suitable solution to minimize the presence of bacteria in wastewater, reducing environmental and economic impacts.


Subject(s)
Corbicula/microbiology , Escherichia coli/isolation & purification , Ozone/chemistry , Adsorption , Animals , Bacteria/isolation & purification , Europe , Filtration , Oxidation-Reduction , Wastewater/microbiology , Water Pollutants/isolation & purification
8.
Environ Sci Pollut Res Int ; 25(35): 34968-34975, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29374377

ABSTRACT

It is well established that aquatic wildlife in marine and freshwater of the European Union is exposed to natural and synthetic endocrine disruptor compounds (EDCs) which are able to interfere with the hormonal system causing adverse effects on the intact physiology of organisms. The traditional wastewater treatment processes are inefficient on the removal of EDCs in low concentration. Moreover, not only the efficiency of treatment must be considered but also toxicological aspects. Taking into account all these aspects, the main goal of the study was to investigate the photochemical decomposition of hazardous phenolic compounds under simulated as well as natural sunlight from the toxicity point of view. The studies were focused on photodegradation of 2,4-dichlorophenol as well as mixture of phenol, 2-chlorophenol and 2,4-dichlorophenol. Photosensitized oxidation process was carried out in homogeneous and heterogeneous system. V. fischeri luminescence inhibition was used to determine the changes of toxicity in mixture during simulated and natural irradiation. The photodegradation was carried out in three kinds of water matrix; moreover, the influence of presence of inorganic matter on the treatment process was investigated. The experiments with natural sunlight proved applicability of photosensitive chitosan for visible-light water pollutant degradation. The results of toxicity investigation show that using photosensitive chitosan for visible-light, the toxicity of reaction mixture towards V. fischeri has significantly decreased. The EC50 was found to increase over the irradiation time; this increase was not proportional to the transformation of the parent compounds.


Subject(s)
Chlorophenols/toxicity , Phenol/toxicity , Photochemical Processes , Sunlight , Water Pollutants, Chemical/toxicity , Chlorophenols/chemistry , Endocrine Disruptors , Fresh Water , Light , Oxidation-Reduction , Phenol/chemistry , Photolysis , Photosensitizing Agents , Wastewater , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
9.
Sci Total Environ ; 609: 329-340, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28753508

ABSTRACT

Conventional wastewater treatments are inefficient for the removal of parabens. The aim of this study was finding a suitable solution using ozone and UVA irradiation combined with TiO2 catalysts doped with different noble metals (Ag, Pt, Pd, Au). Photocatalytic ozonation required lower amounts of ozone for higher efficiency on the removal of parabens, chemical oxygen demand (COD) and total organic carbon (TOC). The best catalyst for the initial contaminants degradation was 0.5% Ag-TiO2 leading to total parabens removal using 46mgO3/L. Due to the relative low mineralization achieved, the toxicity of the treated solutions was still compared with the initial one over several species (Vibrio fischeri, Lepidium sativum and Corbicula fluminea). All the treatments applied led to a clear decrease on the toxicity compared with initial mixture of parabens. From an economical point of view, it was concluded that the presence of UVA irradiation increased the energy consumption compared with catalytic ozonation with these catalysts but it can decrease the time of reaction. From the by-products analysis, it was concluded that hydroxylation appears to be the most significant reaction pathway and the main responsible for parabens degradation.

10.
J Environ Manage ; 195(Pt 2): 166-173, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-27397840

ABSTRACT

The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox® toxicity test. Ozonation in two reactors of working volume 1 dm3 (stirred cell) and 20 dm3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm3) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm3). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%).


Subject(s)
Ozone , Wastewater , Biodegradation, Environmental , Industrial Waste , Textile Industry , Textiles , Waste Disposal, Fluid , Water Pollutants, Chemical/metabolism
11.
Water Sci Technol ; 74(8): 1867-1875, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27789887

ABSTRACT

The aims of the present work were to assess the application of a chemical process to degrade a mixture of parabens and determine the influence of a natural river water matrix on toxicity. Model effluents containing either a single compound, namely methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben or p-hydroxybenzoic acid, or to mimic realistic conditions a mixture of the six compounds was used. Fenton process was applied to reduce the organic charge and toxic properties of the model effluents. The efficiency of the decontamination has been investigated using a chemical as well as a toxicological approach. The potential reduction of the effluents' toxicity after Fenton treatment was evaluated by assessing (i) Vibrio fischeri luminescence inhibition, (ii) lethal effects amongst freshwater Asian clams (Corbicula fluminea), and (iii) the impact on mammalian neuronal activity using brain slices. From the environmental point of view such a broad toxicity analysis has been performed for the first time. The results indicate that Fenton reaction is an effective method for the reduction of chemical oxygen demand of a mixture of parabens and their toxicity to V. fischeri and C. fluminea. However, no important differences were found between raw and treated samples in regard to mammalian neuronal activity.


Subject(s)
Parabens/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Aliivibrio fischeri/drug effects , Animals , Brain/drug effects , Corbicula/drug effects , Female , Oxidation-Reduction , Parabens/toxicity , Rats , Rats, Wistar , Water Pollutants, Chemical/toxicity
12.
Article in English | MEDLINE | ID: mdl-25883787

ABSTRACT

BACKGROUND: In the last few decades the quality of natural water has often deteriorated as a variety of novel pollutants have contaminated rivers and lakes. Trace amounts of some man-made chemicals can be hazardous to plants, animals as well as human health as carcinogens, mutagens or endocrine disruptors. Light radiation may help in its decomposition, aided by naturally occurring colored organic compounds (humic substances) in the water. The aim of these studies was to check the influence of presence of organic and inorganic matter on the removal of endocrine disrupting compound - butylparaben (BP) from water. METHODS: Photochemical decomposition of BP in aqueous solution using: photolysis by ultraviolet-C (UVC) and visible (VIS) irradiation, advanced oxidation in H2O2/UV system and photosensitized oxidation was examined. The degradation processes were carried out in different type of water matrix: natural water from Sulejow Reservoir, simulated natural water with humic acids and buffered solution. RESULTS: The presence of dissolved organic matter in water did not influence much on UVC photolysis and increases only about 8% of BP depletion rate in H2O2/UV system. While during visible light photolysis and photosensitized oxidation the addition of natural water matrix causes the acceleration of reaction rate by 16% and 36%, respectively. Moreover BP degradation proceeds via singlet oxygen generated from humic substances. CONCLUSIONS: Butylparaben undergoes both direct and indirect photodegradation in aqueous solution under UVC and visible radiation. The efficiency of the H2O2/UV process, photolysis as well as photosensitized oxidation processes is strongly dependent on composition of the water.

13.
Photochem Photobiol Sci ; 11(9): 1422-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22728925

ABSTRACT

The photosensitized oxidation of 2-chlorophenol (2-CP) in aqueous solution using immobilized meso-tetraphenylporphyrin (TPP) in polyurethane nanofabrics was studied. The influence of various parameters on the reaction efficiency was investigated, i.e., 2-CP concentration, oxygen content and pH of the reaction solution and the stability of immobilized photosensitizer at the multiple use. The resistance of the structure of the photosensitizer carrier toward the solutions of various pH was also studied. The participation of molecular singlet oxygen ((1)O(2)) in the photooxidation was tested using NaN(3) and imidazole quenchers of (1)O(2). The kinetics of the process was described using Langmuir-Hinshelwood model.

SELECTION OF CITATIONS
SEARCH DETAIL
...