Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Viruses ; 16(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38400055

ABSTRACT

The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.


Subject(s)
Encephalomyocarditis virus , Viral Proteins , Humans , HeLa Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Encephalomyocarditis virus/physiology , Apoptosis , Caspases/genetics , Caspases/metabolism
2.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37892100

ABSTRACT

The tick-borne encephalitis virus (TBEV) is one of the most common members of the Orthoflavivirus genus, which comprises the causative agents of severe diseases in humans and animals. Due to the expanding areas of orthoflavivirus infection, its differential diagnosis is highly demanded. Commercial test kits based on inactivated TBEV may not provide reliable differentiation between flaviviruses because of serological crossover in this genus. Application of recombinant domains (sE and dIII) of the TBEV Sukhar-strain protein E as antigens in an ELISA test system allowed us to identify a wide range of antibodies specific to different TBEV strains. We tested 53 sera from human patients with confirmed TBE diagnosis (the efficacy of our test system based on sE protein was 98%) and 56 sera from patients with other orthoflavivirus infections in which no positive ones were detected using our ELISA test system, thus being indicative of its 100% specificity. We also tested mouse and rabbit sera containing antibodies specific to 17 TBEV strains belonging to different subtypes; this assay exhibited high efficacy and differentiation ability in detecting antibodies against TBEV from other orthoflaviviruses such as Omsk hemorrhagic fever, Powassan, yellow fever, dengue, West Nile, Zika, and Japanese encephalitis viruses.

3.
Viruses ; 14(11)2022 11 10.
Article in English | MEDLINE | ID: mdl-36366584

ABSTRACT

Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4-6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.


Subject(s)
Enterovirus Infections , Enterovirus , Humans , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Enterovirus/genetics , HeLa Cells , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Signal Transduction , Unfolded Protein Response , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
4.
Viruses ; 12(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32883046

ABSTRACT

Significantly divergent polioviruses (VDPV) derived from the oral poliovirus vaccine (OPV) from Sabin strains, like wild polioviruses, are capable of prolonged transmission and neuropathology. This is mainly shown for VDPV type 2. Here we describe a molecular-epidemiological investigation of a case of VDPV type 3 circulation leading to paralytic poliomyelitis in a child in an orphanage, where OPV has not been used. Samples of feces and blood serum from the patient and 52 contacts from the same orphanage were collected twice and investigated. The complete genome sequencing was performed for five polioviruses isolated from the patient and three contact children. The level of divergence of the genomes of the isolates corresponded to approximately 9-10 months of evolution. The presence of 61 common substitutions in all isolates indicated a common intermediate progenitor. The possibility of VDPV3 transmission from the excretor to susceptible recipients (unvaccinated against polio or vaccinated with inactivated poliovirus vaccine, IPV) with subsequent circulation in a closed children's group was demonstrated. The study of the blood sera of orphanage residents at least twice vaccinated with IPV revealed the absence of neutralizing antibodies against at least two poliovirus serotypes in almost 20% of children. Therefore, a complete rejection of OPV vaccination can lead to a critical decrease in collective immunity level. The development of new poliovirus vaccines that create mucosal immunity for the adequate replacement of OPV from Sabin strains is necessary.


Subject(s)
Poliomyelitis/virology , Poliovirus/physiology , Antibodies, Viral/blood , Child, Preschool , Female , Humans , Infant , Male , Orphanages/statistics & numerical data , Poliomyelitis/blood , Poliomyelitis/epidemiology , Poliomyelitis/transmission , Poliovirus/genetics , Poliovirus/isolation & purification , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/genetics , Poliovirus Vaccine, Oral/immunology , Russia/epidemiology
5.
Infect Genet Evol ; 85: 104524, 2020 11.
Article in English | MEDLINE | ID: mdl-32891876

ABSTRACT

Phlebovirus is an abundant and rather heterogeneous genus within the Phenuiviridae family (order Bunyavirales). The genus Phlebovirus is divided into two antigenic complexes, which also correspond to the main vector: sandflies/mosquitoes and ticks. Previously, only sandfly/mosquito-borne phleboviruses were associated with human disease, such as Rift Valley fever virus, Toscana virus, Sicilian and Naples Sandfly fever viruses and others. Until recently, tick-borne phleboviruses were not considered as human pathogens. After the discovery of severe fever with thrombocytopenia syndrome, interest to tick-borne phleboviruses has increased dramatically. In the last decade, many novel phleboviruses have been reported in different regions. Despite this, the diversity, ecology and pathogenicity of these viruses still remain obscure. The aim of this work was to study the diversity of phleboviruses in ticks collected in several regions of Russia. We used pan-phlebovirus RT-PCR assays based on multiple degenerate primers targeting the polymerase gene fragment. Arthropod specimens were collected from 2005 to 2018. A total of 5901 Ixodidae ticks combined into 1116 pools were screened. A total of 160 specific amplicons were produced. In three cases RT-PCR assays amplified two distinct viruses from same tick pools. Direct sequencing of amplicons and subsequent phylogenetic analysis revealed twelve representatives of divergent phlebovirus groups. Based on the distribution of pairwise nucleotide sequence identity values, a cut-off (88%) was suggested to distinguish tick-borne phleboviruses. According to this provisional criterion, two viruses found here could be termed novel, while ten viruses have been described in previous studies. Detected phleboviruses demonstrated almost perfect specificity to a tick species or, at least, a genus. The same pattern was observed for tick-borne phleboviruses found in different studies around the world. Viruses that grouped together on a phylogenetic tree and differed less than this sequence identity threshold suggested above were hosted by ticks from the same genus.


Subject(s)
Phlebotomus Fever/genetics , Phlebovirus/classification , Phlebovirus/genetics , Phylogeny , Species Specificity , Tick-Borne Diseases/genetics , Ticks/virology , Animals , Genetic Variation , Genotype , Phlebotomus Fever/epidemiology , Russia , Sequence Analysis , Tick-Borne Diseases/epidemiology
6.
Viruses ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32224888

ABSTRACT

In recent decades, many new flavi-like viruses have been discovered predominantly in different invertebrates and, as was recently shown, some of them may cause disease in humans. The Jingmenvirus (JMV) group holds a special place among flaviviruses and flavi-like viruses because they have a segmented ssRNA(+) genome. We detected Alongshan virus (ALSV), which is a representative of the JMV group, in ten pools of adult Ixodes persulcatus ticks collected in two geographically-separated Russian regions. Three of the ten strains were isolated in the tick cell line IRE/CTVM19. One of the strains persisted in the IRE/CTVM19 cells without cytopathic effect for three years. Most ALSV virions purified from tick cells were spherical with a diameter of approximately 40.5 nm. In addition, we found smaller particles of approximately 13.1 nm in diameter. We obtained full genome sequences of all four segments of two of the isolated ALSV strains, and partial sequences of one segment from the third strain. Phylogenetic analysis on genome segment 2 of the JMV group clustered our novel strains with other ALSV strains. We found evidence for the existence of a novel upstream open reading frame in the glycoprotein-coding segment of ALSV and other members of the JMV group.


Subject(s)
Flaviviridae Infections/epidemiology , Flaviviridae Infections/virology , Flaviviridae/classification , Flaviviridae/genetics , Animals , Cell Line , Computational Biology/methods , Flaviviridae/isolation & purification , Flaviviridae/ultrastructure , Flaviviridae Infections/transmission , Genome, Viral , Genomics/methods , Geography, Medical , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Russia/epidemiology , Ticks/virology
7.
Ticks Tick Borne Dis ; 11(2): 101333, 2020 03.
Article in English | MEDLINE | ID: mdl-31787560

ABSTRACT

Kemerovo virus (KEMV) is a member of the Great Island virus genetic group, belonging to the tick-borne arboviruses of the genus Orbivirus within the family Reoviridae. Nine strains of KEMV, which were isolated from various locations in Russia, were sequenced by high-throughput sequencing to study their intraspecific diversity and the interspecific relationships of viruses within the Great Island genetic group. For the first time, multiple reassortment within KEMV was reliably demonstrated. Different types of independently emerged alternative reading frames in segment 9 and heterogeneity of the viral population in one of the KEMV strains were found. The hypothesis of the role of an alternative open reading frame (ORF) in segment 9 in KEMV cellular tropism was not confirmed in this study.


Subject(s)
Genetic Variation , Genome, Viral , Orbivirus/genetics , Phylogeny , Russia , Sequence Analysis, DNA
8.
Ticks Tick Borne Dis ; 10(5): 959-969, 2019 08.
Article in English | MEDLINE | ID: mdl-31103456

ABSTRACT

The most significant processes of arbovirus evolution can be expected to occur in the territories where ticks of different species cohabitate and at the boundaries of virus occurrence, where the probability of the appearance of new virus variants is high due to the possible shift in the main vectors and/or vertebrate hosts. One of the most interesting regions in this regard is the Republic of Tuva. Since most of its territory is covered by mountain ranges and intermountain basins, we were able to study the distribution of vectors and viruses in geographically isolated areas at different altitudes and in various landscapes. From 2008 to 2017, we conducted six expeditions to Tuva and collected 3,077 adult ticks and 24 nymphs. The distribution of tick species was confined to specific landscapes, as follows: Dermacentor nuttalli occurred in steppes, D. silvarum inhabited forest-steppe areas, and Ixodes persulcatus inhabited mixed forests. All three species of ticks were collected on plains and mountain slopes. The range of D. silvarum was shown to be lower than 1300 m above sea level (a.s.l.). Only D. nuttalli and I. persulcatus were collected at higher altitudes. According to our observations, single nymphs of D. nuttalli appear on animals one month before larvae appear. This finding confirms the hypothesis that the immature forms of D. nuttalli are able to overwinter under favourable conditions. We isolated 9 strains and 3 isolates of tick-borne encephalitis virus (TBEV) from I. persulcatus, one strain from D. nuttalli and one strain from D. silvarum. The TBEV strain from D. nuttalli was isolated from the territory inhabited only by Dermacentor ticks. All isolated strains belong to the Siberian subtype of TBEV. TBEV was detected in ticks from all the investigated altitudes. There were no statistically significant differences in the virus prevalence between the Dermacentor and Ixodes ticks. The results of our work provide additional support for the hypothesis of the existence of TBEV foci in areas with an absolute dominance of D. nuttalli.


Subject(s)
Animal Distribution , Arachnid Vectors/virology , Dermacentor/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/epidemiology , Ixodes/virology , Animals , Dermacentor/growth & development , Dermacentor/physiology , Ecosystem , Encephalitis, Tick-Borne/virology , Ixodes/growth & development , Ixodes/physiology , Larva/growth & development , Larva/physiology , Larva/virology , Nymph/growth & development , Nymph/physiology , Nymph/virology , Prevalence , Russia/epidemiology
9.
Viruses ; 11(5)2019 05 25.
Article in English | MEDLINE | ID: mdl-31130655

ABSTRACT

Replication of RNA viruses is generally markedly error-prone. Nevertheless, these viruses usually retain their identity under more or less constant conditions due to different mechanisms of mutation tolerance. However, there exists only limited information on quantitative aspects of the mutational tolerance of distinct viral functions. To address this problem, we used here as a model the interaction between a replicative cis-acting RNA element (oriL) of poliovirus and its ligand (viral protein 3CD). The mutational tolerance of a conserved tripeptide of 3CD, directly involved in this interaction, was investigated. Randomization of the relevant codons and reverse genetics were used to define the space of viability-compatible sequences. Surprisingly, at least 11 different amino acid substitutions in this tripeptide were not lethal. Several altered viruses exhibited wild-type-like phenotypes, whereas debilitated (but viable) genomes could increase their fitness by the acquisition of reversions or compensatory mutations. Together with our study on the tolerance of oriL (Prostova et al., 2015), the results demonstrate that at least 42 out of 51 possible nucleotide replacements within the two relevant genomic regions are viability-compatible. These results provide new insights into structural aspects of an important viral function as well as into the general problems of viral mutational robustness and evolution.


Subject(s)
Host-Pathogen Interactions , Mutation , RNA Virus Infections/metabolism , RNA Virus Infections/virology , RNA Viruses/physiology , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Base Sequence , Genome, Viral , Humans , Plasmids/genetics , RNA, Viral/chemistry , Virus Replication
10.
Int J Infect Dis ; 76: 64-69, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30201507

ABSTRACT

OBJECTIVES: Different polio vaccination schemes have been used in Russia: oral polio vaccine (OPV) was used in 1998-2007 and inactivated polio vaccine (IPV) followed by OPV in 2008-2014. This article presents the characteristics of vaccine-associated paralytic poliomyelitis (VAPP) cases in Russia during this period. METHODS: VAPP cases were identified through the acute flaccid paralysis surveillance system, classified by the National Expert Classification Committee. Criteria for a 'recipient VAPP' (rVAPP) case were poliomyelitis symptoms 6-30days after OPV administration, isolation of the vaccine virus, and residual paralysis 60days after disease onset. Unvaccinated cases with a similar picture 6-60days after contact with an OPV recipient were classified as 'contact VAPP' (cVAPP) cases. RESULTS: During 1998-2014, 127 VAPP cases were registered: 82 rVAPP and 45 cVAPP. During the period in which only OPV was used, rVAPP cases prevailed (73.8%); cases of rVAPP were reduced during the sequential scheme period (15%). Poliovirus type 3 (39.5%) and type 2 (23.7%) were isolated more often. Vaccine-derived poliovirus types 1, 2, and 3 were isolated from three cases of cVAPP. The incidence of VAPP cases was higher during the period of OPV use (1 case/1.59 million OPV doses) than during the sequential scheme period (1 case/4.18 million doses). CONCLUSION: The risk of VAPP exists if OPV remains in the vaccination schedule.


Subject(s)
Poliomyelitis/etiology , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Oral/adverse effects , Vaccination/adverse effects , Child, Preschool , Female , Humans , Immunization Schedule , Infant , Male , Russia/epidemiology , Time Factors
11.
Microbiol Mol Biol Rev ; 82(2)2018 06.
Article in English | MEDLINE | ID: mdl-29540453

ABSTRACT

Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.


Subject(s)
Evolution, Molecular , RNA Viruses/genetics , RNA Viruses/physiology , RNA, Viral/genetics , Virus Replication , Animals , Genetic Fitness , Genome, Viral , Genomic Structural Variation , Humans , Models, Genetic , Mutation , Picornaviridae/genetics
12.
J Gen Virol ; 99(2): 240-245, 2018 02.
Article in English | MEDLINE | ID: mdl-29393021

ABSTRACT

We studied minor variants within two tick-borne encephalitis virus (TBEV) populations with a common ancestor: the mouse brain-adapted variant EK-328c and the tick-adapted variant M. High-throughput sequencing with custom amplicons from RT-PCR viral RNA was performed on Illumina MiSeq 2*250 paired-end v2 chemistry. Using the LowFreq program (default settings) and Sanger-sequenced consensus as a reference, variants with an abundance of 1 % and above within the studied populations were identified. Using the obtained data in the context of our previous studies, we concluded that TBEV variants, which are different from the major population phenotype and can become a major part of the viral population under favourable environmental conditions, can exist at abundances of less than 1 % in the long-term. The comparison of our data with the literature allowed us to conclude that the laboratory variant EK-328c and variant M have similar SNV counts to TBEV variants from natural populations and some fast-evolving RNA viruses.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Animals , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Mice , RNA, Viral/genetics , Sequence Analysis, RNA
13.
Viruses ; 9(11)2017 11 22.
Article in English | MEDLINE | ID: mdl-29165333

ABSTRACT

Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These "weak" segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.


Subject(s)
Evolution, Molecular , Genome, Viral , Poliovirus Vaccine, Oral/genetics , Poliovirus/genetics , Recombination, Genetic , Drug-Related Side Effects and Adverse Reactions , Enterovirus Infections , Humans , Mutation , Poliomyelitis/virology , Virulence/genetics
14.
PeerJ ; 5: e3896, 2017.
Article in English | MEDLINE | ID: mdl-29018627

ABSTRACT

BACKGROUND: Enteroviruses are small non-enveloped viruses with a (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. METHODS: To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6, 400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. RESULTS: A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y = U/C, N = any nucleotide, H = A/C/U). The putative RNA-binding tripeptide 154-156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. DISCUSSION: Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.

15.
J Gen Virol ; 98(5): 955-961, 2017 May.
Article in English | MEDLINE | ID: mdl-28555547

ABSTRACT

Our investigation of 1004 faecal specimens from European bats for picornaviruses by broadly reactive nested reverse transcription-PCR found picornaviral RNA in 28 samples (2.8 %). Phylogenetic analysis of the partial 3D genomic region suggested that one bat virus belonged to the species Enterovirus G (EV-G, formerly Porcine enterovirus B). Bat infection was supported by relatively high EV-G concentrations of 1.1×106 RNA copies per gram of faeces. All other bat viruses belonged either to the bat-associated genus Mischivirus, or to an unclassified Picornaviridae group distantly related to the genus Sapelovirus. Members of this unclassified sapelovirus-related group had RNA secondary structures in their 3'-nontranslated regions that were typical of enteroviruses and that resembled structures that occur in bat-associated coronaviruses, suggesting ancient recombination events. Based on sequence distances, several picornaviruses from European and Chinese bats were likely conspecific, suggesting connectivity of virus populations. Due to their high mutation rates and their diversity, picornaviruses may be useful tools for studies of bat and virus ecology.


Subject(s)
Chiroptera/virology , Picornaviridae/classification , Picornaviridae/isolation & purification , Animals , Asia , Cluster Analysis , Enteroviruses, Porcine , Europe , Feces/virology , Genome, Viral , Phylogeny , Picornaviridae/genetics , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology
16.
PLoS One ; 11(11): e0166744, 2016.
Article in English | MEDLINE | ID: mdl-27880794

ABSTRACT

Crimean Congo hemorrhagic fever virus (CCHFV) is one of the most severe viral zoonozes. It is prevalent throughout Africa, Asia and southern Europe. Limited availability of sequence data has hindered phylogeographic studies. The complete genomic sequence of all three segments of 14 Crimean Congo hemorrhagic fever virus strains isolated from 1958-2000 in Russia, Central Asia and Africa was identified. Each genomic segment was independently subjected to continuous Bayesian phylogeographic analysis. The origin of each genomic segment was traced to Africa about 1,000-5,000 years ago. The virus was first introduced to South and Central Asia in the Middle Ages, and then spread to China, India and Russia. Reverse transfers of genomic segments from Asia to Africa were also observed. The European CCHFV genotype V was introduced to Europe via the Astrakhan region in South Russia 280-400 years ago and subsequently gradually spread westward in Russia, to Turkey and the Balkans less than 150 years ago. Only a few recombination events could be suggested in S and L genomic segments, while segment reassortment was very common. The median height of a non-reassortant phylogenetic tree node was 68-156 years. There were reassortment events within the European CCHFV lineage, but not with viruses from other locations. Therefore, CCHFV in Europe is a recently emerged zoonosis that represents a spillover from the global gene pool.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo/classification , Africa , Asia , Bayes Theorem , Europe , Genome, Viral , Genotype , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever, Crimean/virology , Humans , Phylogeny , Phylogeography
17.
J Virol ; 90(13): 5978-88, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27099315

ABSTRACT

UNLABELLED: Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE: The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses.


Subject(s)
Disease Outbreaks , Paraplegia/virology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/adverse effects , Poliovirus/genetics , Poliovirus/pathogenicity , Antibodies, Viral/blood , Enterovirus C, Human/genetics , Evolution, Molecular , Genome, Viral , Humans , Mutation , Poliomyelitis/immunology , Poliomyelitis/transmission , Poliovirus/immunology , Poliovirus/isolation & purification , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/genetics , Poliovirus Vaccine, Oral/immunology , Recombination, Genetic , Russia/epidemiology , Viral Proteins/genetics
18.
J Virol Methods ; 232: 29-32, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26947398

ABSTRACT

This study reports the pan-phlebovirus assay capable of detecting both sandfly/mosquito- and tick-borne phleboviruses. Sensitivity and specificity of the assay was verified using a panel of arboviruses. The RT-PCR assay is simple and sensitive, and thus well suited for screening of field samples.


Subject(s)
Bunyaviridae Infections/diagnosis , Molecular Diagnostic Techniques/methods , Phlebovirus/classification , Phlebovirus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Virology/methods , Bunyaviridae Infections/virology , Humans , Phlebovirus/genetics , Sensitivity and Specificity
19.
Proc Natl Acad Sci U S A ; 112(49): 15190-5, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26575627

ABSTRACT

Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.


Subject(s)
Biological Evolution , Hepatitis A virus/genetics , Mammals/virology , Animals , Humans , Molecular Sequence Data , Phylogeny
20.
RNA Biol ; 12(12): 1338-54, 2015.
Article in English | MEDLINE | ID: mdl-26488412

ABSTRACT

Since replication of RNA-viruses is generally a low-fidelity process, it would be advantageous, if specific interactions of their genomic cis-elements with dedicated ligands are relatively tolerant to mutations. The specificity/promiscuity trade-off of such interactions was addressed here by investigating structural requirements of the oriL (also known as the clover leaf-like element), of poliovirus RNA, a replicative cis-element containing a conserved essential tetraloop functionally interacting with the viral protein 3CD. The sequence of this tetraloop and 2 adjacent base-pairs was randomized in the viral genome, and viable viruses were selected in susceptible cells. Strikingly, each position of this octanucleotide in 62 investigated viable viruses could be occupied by any nucleotide (with the exception of one position, which lacked U), though with certain sequence preferences, confirmed by engineering mutant viral genomes whose phenotypic properties were found to correlate with the strength of the cis-element/ligand interaction. The results were compatible with a hypothesis that functional recognition by 3CD requires that this tetraloop should stably or temporarily adopt a YNMG-like (Y=U/C, N=any nucleotide, M=A/C) fold. The fitness of "weak" viruses could be increased by compensatory mutations "improving" the tetraloops. Otherwise, the recognition of "bad" tetraloops might be facilitated by alterations in the 3CD protein. The virus appeared to tolerate mutations in its cis-element relaying on either robustness (spatial structure degeneracy) or resilience (a combination of dynamic RNA folding, low-fidelity replication modifying the cis-element or its ligand, and negative selection). These mechanisms (especially resilience involving metastable low-fit intermediates) can also contribute to the viral evolvability.


Subject(s)
Mutation/genetics , RNA Viruses/genetics , Regulatory Sequences, Nucleic Acid/genetics , Virus Replication/genetics , Base Pairing/genetics , Base Sequence , Genetic Engineering , Genome, Viral , Molecular Sequence Data , Nucleotides/genetics , Phenotype , Plasmids/genetics , RNA Viruses/pathogenicity , RNA, Viral/genetics , SELEX Aptamer Technique , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...