Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921875

ABSTRACT

Cathodes made of LiFePO4 (LFP) offer numerous benefits including being non-toxic, eco-friendly, and affordable. The distinctive olivine structure of LFP cathodes contributes to their electrochemical stability. Nonetheless, this structure is also the cause of their low ionic and electronic conductivity. To enhance these limitations, an uncomplicated approach has been effectively employed. A straightforward solid-state synthesis technique is used to apply a coating of biomass from potato peels to the LFP cathode, boosting its electrochemical capabilities. Potato peels contain pyridinic and pyrrolic nitrogen, which are conducive to ionic and electronic movement and facilitate pathways for lithium-ion and electron transfer, thus elevating electrochemical performance. When coated with nitrogen-doped carbon derived from potato peel biomass (PPNC@LFP), the LFP cathode demonstrates an improved discharge capacity of 150.39 mAh g-1 at a 0.1 C-rate and 112.83 mAh g-1 at a 1.0 C-rate, in contrast to the uncoated LFP which shows capacities of 141.34 mAh g-1 and 97.72 mAh g-1 at the same rates, respectively.

2.
J Nanosci Nanotechnol ; 21(12): 6227-6233, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34229825

ABSTRACT

The significant role of Tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an efficient additive during cycling of the layered nanostructured LiNi0.1Mg0.1Co0.8O2 and olivine LiFePO4 cathode materials in EC/DMC and 1M LiPF6 electrolyte for Li-ion battery are extensively investigated in this work. The electrochemical characterization techniques such as cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy show that TTFP improves cycling stability and reduces the irreversible capacity of LiNi0.1Mg0.1Co0.8O2 and LiFePO4 electrodes. Also, the presence of TTFP in electrolyte solution reduces the impedance in LiNi0.1Mg0.1Co0.8O2 and LiFePO4 cathode materials at room temperature. A family of Nyquist plots was obtained from LiNi0.1Mg0.1Co0.8O2 and LiFePO4 electrodes for various potentials during the course of charging. The addition of TTFP in the electrolyte reduces the surface impedance of lithiated LiNi0.1Mg0.1Co0.8O2 and LiFePO4 which can be attributed to the reaction of the additive on the electrode's surface. Also, the presence of the additive TTFP in LiNi0.1Mg0.1Co0.8O2 and LiFePO4 cell enhances the lithium diffusion rate and improves the electronic conductivity of the cathode material.

3.
Sci Rep ; 9(1): 3318, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30824812

ABSTRACT

A facile strategy to entrap milled silicon (m-Si) particles using nitrogen-doped-carbon (N-C@m-Si) to overcome the dramatic volume changes in Si during intercalation of lithium ions and to improve its electronic conductivity is reported here. The only natural nitrogen containing biomaterial alkaline polysaccharide, i.e., chitosan, is used as the carbon source. Simple hydrothermal technique followed by a subsequent carbonization process is used to synthesize N-C and N-C@m-Si particles. N-C@m-Si exhibited significantly improved electrochemical performance as compared to bare m-Si, which is confirmed by the obtained discharge capacity of 942.4 mAh g-1 and columbic efficiency of 97% after 50 cycles at 0.1C rate. With regard to the N-C electrodes, the obtained discharge capacity of 485.34 mAh g-1 and columbic efficiency of 99.78%, after 50 cycles at 0.1C rate is superior to the commercial graphite electrodes. The solid electrolyte interphase (SEI) layer that formed over m-Si and N-C@m-Si electrodes is characterized using X-ray photoelectron spectroscopy. Compared to the SEI layer that formed over m-Si electrode after 10 charge-discharge cycles, the N-C@m-Si electrode had a stable lithium fluoride and carbonate species. Brief reaction mechanisms, representing the formation of different species in the SEI layer, is derived to explain its behavior during the electrochemical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...