Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e31713, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832264

ABSTRACT

Humans benefit from a vast community of microorganisms in their gastrointestinal tract, known as the gut microbiota, numbering in the tens of trillions. An imbalance in the gut microbiota known as dysbiosis, can lead to changes in the metabolite profile, elevating the levels of toxins like Bacteroides fragilis toxin (BFT), colibactin, and cytolethal distending toxin. These toxins are implicated in the process of oncogenesis. However, a significant portion of the Bacteroides fragilis genome consists of functionally uncharacterized and hypothetical proteins. This study delves into the functional characterization of hypothetical proteins (HPs) encoded by the Bacteroides fragilis genome, employing a systematic in silico approach. A total of 379 HPs were subjected to a BlastP homology search against the NCBI non-redundant protein sequence database, resulting in 162 HPs devoid of identity to known proteins. CDD-Blast identified 106 HPs with functional domains, which were then annotated using Pfam, InterPro, SUPERFAMILY, SCANPROSITE, SMART, and CATH. Physicochemical properties, such as molecular weight, isoelectric point, and stability indices, were assessed for 60 HPs whose functional domains were identified by at least three of the aforementioned bioinformatic tools. Subsequently, subcellular localization analysis was examined and the gene ontology analysis revealed diverse biological processes, cellular components, and molecular functions. Remarkably, E1WPR3 was identified as a virulent and essential gene among the HPs. This study presents a comprehensive exploration of B. fragilis HPs, shedding light on their potential roles and contributing to a deeper understanding of this organism's functional landscape.

2.
Heliyon ; 9(2): e13128, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36747553

ABSTRACT

Nanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly. In the green bioprocess, plant, algal, fungal and cyanobacterial extract solutions have been utilized as nucleation/capping agents to develop effective nanomaterials for advanced medical applications. Several metal salts, such as silver, zinc, titanium and other inorganic salts, were utilized to fabricate innovative nanoparticles for healthcare applications. Irrespective of the type of wound, infection in the wound area is a widespread problem. Micro-organisms, the prime reason for wound complications, are gradually gaining resistance against the commonly used antimicrobial drugs. This necessitates the need to generate nanoparticles with efficient antimicrobial potential to keep the pathogenic microbes under control. These nanoparticles can be topically applied as an ointment and also be used by incorporating them into hydrogels, sponges or electrospun nanofibers. The main aim of this review is to highlight the recent advances in the Ag, ZnO and TiO2 nanoparticles with possible wound healing applications, coupled with the bactericidal ability of a green synthesis process.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-972590

ABSTRACT

The proportion of the reported cases of Zika virus (ZIKV) infection reached the status of a pandemic. Numerous studies are being conducted on the isolation of ZIKV strains from various epidemics, diagnosis of the infections, various animal models and cell culture designs to study the pathogenesis of ZIKV in the attempts to find an effective ZIKV vaccine. This review focuses upon the ‘Off-Spectrum’ body of studies which analyses the epidemiology, pathogenesis and other attributes of ZIKV in the light of various dissident hypotheses.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-819480

ABSTRACT

The proportion of the reported cases of Zika virus (ZIKV) infection reached the status of a pandemic. Numerous studies are being conducted on the isolation of ZIKV strains from various epidemics, diagnosis of the infections, various animal models and cell culture designs to study the pathogenesis of ZIKV in the attempts to find an effective ZIKV vaccine. This review focuses upon the 'Off-Spectrum' body of studies which analyses the epidemiology, pathogenesis and other attributes of ZIKV in the light of various dissident hypotheses.

5.
Indian J Exp Biol ; 53(9): 600-10, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26548080

ABSTRACT

A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 µI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.


Subject(s)
Cajanus/cytology , Plant Somatic Embryogenesis Techniques/methods , Primary Cell Culture/methods , Biogenic Polyamines/pharmacology , Cajanus/embryology , Cell Division/drug effects , Clone Cells/drug effects , Culture Media/pharmacology , Ethanolamines/pharmacology , Lithium Chloride/pharmacology , Plant Growth Regulators/pharmacology , Polyethylene Glycols/pharmacology , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...